Computing Critical Eigenvalues of Power Systems Using Inexact Two-Sided Jacobi-Davidson

被引:13
作者
Du, Zhengchun [1 ]
Li, Chongtao [1 ]
Cui, Yong [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Elect Engn, Xian 710049, Peoples R China
关键词
Cayley transformation; critical eigenvalues; inexact two-sided Jacobi-Davidson; power systems; SIGNAL STABILITY ANALYSIS; RAYLEIGH QUOTIENT ITERATION; RIGHTMOST EIGENVALUES; ARNOLDI METHOD; COMPUTATION; MATRICES;
D O I
10.1109/TPWRS.2011.2139231
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes inexact two-sided Jacobi-Davidson (ITSJD) method to compute the critical (least damping ratio) eigenvalues and corresponding left and right eigenvectors of power systems. Using approximation correction vectors to expand search spaces of two-sided Jacobi-Davidson method leads to ITSJD, which is used to compute eigenvalues closest to the target. Only one LU factorization is needed in whole iteration to improve the computing efficiency. The critical eigenvalues are mapped to extreme eigenvalues of Cayley transformation matrix which can be calculated by using ITSJD. The proposed method has been tested on systems with orders of 493, 1461, and 3781. The results show that ITSJD is effective and able to compute the critical eigenvalues and eigenvectors.
引用
收藏
页码:2015 / 2022
页数:8
相关论文
共 23 条
[1]   Improved methodologies for the calculation of critical eigenvalues in small signal stability analysis [J].
Angelidis, G ;
Semlyen, A .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (03) :1209-1215
[2]  
[Anonymous], 1992, Numerical Methods for Large Eigenvalue Problems
[3]   EIGENVALUE ANALYSIS OF SYNCHRONIZING POWER FLOW OSCILLATIONS IN LARGE ELECTRIC-POWER SYSTEMS [J].
BYERLY, RT ;
BENNON, RJ ;
SHERMAN, DE .
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1982, 101 (01) :235-243
[4]   Calculation of electromechanical oscillation modes in large power systems using Jacobi-Davidson method [J].
Du, Z ;
Liu, W ;
Fang, W .
IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 2005, 152 (06) :913-918
[5]   Calculation of rightmost eigenvalues in power systems using the Jacobi-Davidson method [J].
Du, ZC ;
Liu, W ;
Fang, WL .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2006, 21 (01) :234-239
[6]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[7]   Two-sided and alternating Jacobi-Davidson [J].
Hochstenbach, ME ;
Sleijpen, GLG .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 358 :145-172
[8]   Calculation of rightmost eigenvalues in power systems using the block Arnold Chebyshev method (BACM) [J].
Lee, B ;
Song, H ;
Kwon, SH ;
Kim, D ;
Iba, K .
IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 2003, 150 (01) :23-27
[9]   NEW METHODS FOR FAST SMALL-SIGNAL STABILITY ASSESSMENT OF LARGE-SCALE POWER-SYSTEMS [J].
LIMA, LTG ;
BEZERRA, LH ;
TOMEI, C ;
MARTINS, N .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1995, 10 (04) :1979-1985
[10]   SHIFT-INVERT AND CAYLEY TRANSFORMS FOR DETECTION OF RIGHTMOST EIGENVALUES OF NONSYMMETRIC MATRICES [J].
MEERBERGEN, K ;
SPENCE, A ;
ROOSE, D .
BIT, 1994, 34 (03) :409-423