Seasonal challenges for a California renewable- energy-driven grid

被引:15
作者
Abido, Mahmoud Y. [1 ,2 ]
Mahmud, Zabir [3 ]
Sanchez-Perez, Pedro Andres [3 ]
Kurtz, Sarah R. [1 ,3 ,4 ]
机构
[1] Univ Calif Merced, Sch Engn, Mech Engn Grad Program, Merced, CA 95343 USA
[2] Cairo Univ, Fac Engn, Aerosp Engn Dept, Cairo 12613, Egypt
[3] Univ Calif Merced, Sch Engn, Environm Syst Grad Program, Merced, CA 95343 USA
[4] Univ Calif Merced, Sch Engn, Mat & Biomat Sci & Engn Grad Program, Merced, CA 95343 USA
关键词
STORAGE;
D O I
10.1016/j.isci.2021.103577
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Currently, the most difficult time of year for California to supply the demanded electricity is around sunset on very hot summer days. As California uses more renewable electricity, that challenge may shift to any time of the year depending on the supply of electricity more than on the demand. We study various scenarios for applying a 100% renewable energy grid using six years (2015-2020) of historical demand and scaled-up solar and wind generation to investigate the main function of the storage in affording adequate electricity supply at all times of the year. We identify the times of year that may be most challenging. We detect that, for a solar dominant generation profile, the ultimate challenge shifts from summer to winter. Furthermore, the critical time of the year may be shifted by one or two months depending on the amount and the mix of the renewable generation that will be built.
引用
收藏
页数:18
相关论文
共 29 条
[1]   Role of Long-Duration Energy Storage in Variable Renewable Electricity Systems [J].
Dowling, Jacqueline A. ;
Rinaldi, Katherine Z. ;
Ruggles, Tyler H. ;
Davis, Steven J. ;
Yuan, Mengyao ;
Tong, Fan ;
Lewis, Nathan S. ;
Caldeira, Ken .
JOULE, 2020, 4 (09) :1907-1928
[2]   California offshore wind energy potential [J].
Dvorak, Michael J. ;
Archer, Cristina L. ;
Jacobson, Mark Z. .
RENEWABLE ENERGY, 2010, 35 (06) :1244-1254
[3]   Renewable energy resources: Current status, future prospects and their enabling technology [J].
Ellabban, Omar ;
Abu-Rub, Haitham ;
Blaabjerg, Frede .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 39 :748-764
[4]   Terawatt-scale photovoltaics: Trajectories and challenges [J].
Haegel, Nancy M. ;
Margolis, Robert ;
Buonassisi, Tonio ;
Feldman, David ;
Froitzheim, Armin ;
Garabedian, Raffi ;
Green, Martin ;
Glunz, Stefan ;
Henning, Hans-Martin ;
Holder, Burkhard ;
Kaizuka, Izumi ;
Kroposki, Benjamin ;
Matsubara, Koji ;
Niki, Shigeru ;
Sakurai, Keiichiro ;
Schindler, Roland A. ;
Tumas, William ;
Weber, Eicke R. ;
Wilson, Gregory ;
Woodhouse, Michael ;
Kurtz, Sarah .
SCIENCE, 2017, 356 (6334) :141-143
[5]   Seasonal optimal mix of wind and solar power in a future, highly renewable Europe [J].
Heide, Dominik ;
von Bremen, Lueder ;
Greiner, Martin ;
Hoffmann, Clemens ;
Speckmann, Markus ;
Bofinger, Stefan .
RENEWABLE ENERGY, 2010, 35 (11) :2483-2489
[6]  
Hundiwale A., 2019, Tech. rep.
[7]  
Kittner N, 2020, TECHNOLOGICAL LEARNING IN THE TRANSITION TO A LOW-CARBON ENERGY SYSTEM: CONCEPTUAL ISSUES, EMPIRICAL FINDINGS, AND USE, IN ENERGY MODELING, P119, DOI 10.1016/B978-0-12-818762-3.00008-X
[8]   Policy Decision Support for Renewables Deployment through Spatially Explicit Practically Optimal Alternatives [J].
Lombardi, Francesco ;
Pickering, Bryn ;
Colombo, Emanuela ;
Pfenninger, Stefan .
JOULE, 2020, 4 (10) :2185-2207
[9]  
Mahmud Z., 2022, RENEWABLE SUSTAINABL
[10]   Long-run system value of battery energy storage in future grids with increasing wind and solar generation [J].
Mallapragada, Dharik S. ;
Sepulveda, Nestor A. ;
Jenkins, Jesse D. .
APPLIED ENERGY, 2020, 275