NODAL SOLUTIONS FOR SOME SINGULARLY PERTURBED DIRICHLET PROBLEMS

被引:7
|
作者
D'Aprile, Teresa [1 ]
Pistoia, Angela [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat, I-00161 Rome, Italy
关键词
Nodal solutions; multiple peaks; finite-dimensional reduction; INTERIOR PEAK SOLUTIONS; CLUSTERED SOLUTIONS; ELLIPTIC PROBLEMS; EXISTENCE; DOMAINS; NUMBER;
D O I
10.1090/S0002-9947-2011-05221-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the equation -epsilon(2)Delta u+u = f(u) in a bounded, smooth domain Omega subset of R-N with homogeneous Dirichlet boundary conditions. We prove the existence of nodal solutions with multiple peaks concentrating at different points of Omega. The nonlinearity f grows superlinearly and subcritically. We do not require symmetry conditions on the geometry of the domain.
引用
收藏
页码:3601 / 3620
页数:20
相关论文
共 50 条