A reusable neural network pipeline for unidirectional fiber segmentation

被引:7
作者
de Siqueira, Alexandre Fioravante [1 ,2 ]
Ushizima, Daniela M. [1 ,2 ,3 ]
van der Walt, Stefan J. [1 ]
机构
[1] Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[3] Univ Calif San Francisco, Bakar Computat Hlth Sci Inst, San Francisco, CA 94143 USA
关键词
COMPOSITE MICROSTRUCTURE; ALGORITHM; IMAGES; MODELS;
D O I
10.1038/s41597-022-01119-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fiber-reinforced ceramic-matrix composites are advanced, temperature resistant materials with applications in aerospace engineering. Their analysis involves the detection and separation of fibers, embedded in a fiber bed, from an imaged sample. Currently, this is mostly done using semi-supervised techniques. Here, we present an open, automated computational pipeline to detect fibers from a tomographically reconstructed X-ray volume. We apply our pipeline to a non-trivial dataset by Larson et al. To separate the fibers in these samples, we tested four different architectures of convolutional neural networks. When comparing our neural network approach to a semi-supervised one, we obtained Dice and Matthews coefficients reaching up to 98%, showing that these automated approaches can match human-supervised methods, in some cases separating fibers that human-curated algorithms could not find. The software written for this project is open source, released under a permissive license, and can be freely adapted and re-used in other domains.
引用
收藏
页数:14
相关论文
共 53 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
Alegro M., DEEP LEARNING ALZHEI, DOI [10.1101/698902(2020, DOI 10.1101/698902(2020]
[3]   Size invariant circle detection [J].
Atherton, TJ ;
Kerbyson, DJ .
IMAGE AND VISION COMPUTING, 1999, 17 (11) :795-803
[4]   Semantic segmentation of microscopic neuroanatomical data by combining topological priors with encoder-decoder deep networks [J].
Banerjee, Samik ;
Magee, Lucas ;
Wang, Dingkang ;
Li, Xu ;
Huo, Bing-Xing ;
Jayakumar, Jaikishan ;
Matho, Katherine ;
Lin, Meng-Kuan ;
Ram, Keerthi ;
Sivaprakasam, Mohanasankar ;
Huang, Josh ;
Wang, Yusu ;
Mitra, Partha P. .
NATURE MACHINE INTELLIGENCE, 2020, 2 (10) :585-+
[5]   The Materials Data Facility: Data Services to Advance Materials Science Research [J].
Blaiszik, B. ;
Chard, K. ;
Pruyne, J. ;
Ananthakrishnan, R. ;
Tuecke, S. ;
Foster, I. .
JOM, 2016, 68 (08) :2045-2052
[6]   Anomaly Detection of Microstructural Defects in Continuous Fiber Reinforced Composites [J].
Bricker, Stephen ;
Simmons, J. P. ;
Przybyla, Craig ;
Hardie, Russell .
COMPUTATIONAL IMAGING XIII, 2015, 9401
[7]  
Brox T., 2016, INT C MED IM COMP CO, P424
[8]  
Chambolle A, 2004, J MATH IMAGING VIS, V20, P89
[9]  
Chollet F., 2015, Keras
[10]   A fiber-segmentation algorithm for composites imaged using X-ray microtomography: Development and validation [J].
Creveling, Peter J. ;
Whitacre, William W. ;
Czabaj, Michael W. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2019, 126