Local tangential lifting virtual element method for the diffusion-reaction equation on the non-flat Voronoi discretized surface

被引:1
作者
Li, Jingwei [1 ,2 ,3 ]
Feng, Xinlong [1 ]
He, Yinnian [1 ,4 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Beijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
基金
中国博士后科学基金;
关键词
Surface virtual element method; Local tangential lifting method; Non-flat Voronoi discretized surface; Diffusion-reaction equation; Local coordinate system; MODELS; PDES;
D O I
10.1007/s00366-021-01595-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose the surface virtual element method (SVEM) combining with the local tangential lifting technique (LTL) to solve the diffusion-reaction (DR) equation on the non-flat Voronoi discretized surface embedded in R-3. It has been a challenge on how to design the efficient numerical method to treat the non-flat discretized surface in comparison with the easy construction of flat discretized surface. Limited to the linear virtual element space, we derive the computable virtual element form of the non-flat Voronoi discretized surface by lifting the Voronoi element into the tangential plane. We demonstrate that this method developed here presents a good numerical simulation on a wide variety of polygonal discretized surfaces. Finally, numerical experiments are carried out to show the efficiency of the proposed method.
引用
收藏
页码:5297 / 5307
页数:11
相关论文
共 49 条
[21]  
Ju LL, 2007, INT J NUMER ANAL MOD, V4, P531
[22]   A finite volume method on general surfaces and its error estimates [J].
Ju, Lili ;
Du, Qiang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 352 (02) :645-668
[23]   A RADIAL BASIS FUNCTION (RBF) COMPACT FINITE DIFFERENCE (FD) SCHEME FOR REACTION-DIFFUSION EQUATIONS ON SURFACES [J].
Lehto, Erik ;
Shankar, Varun ;
Wright, Grady B. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05) :A2129-A2151
[24]   Divergence-free radial kernel for surface Stokes equations based on the surface Helmholtz decomposition [J].
Li, Jingwei ;
Gao, Zhiming ;
Dai, Zihuan ;
Feng, Xinlong .
COMPUTER PHYSICS COMMUNICATIONS, 2020, 256
[25]   Streamline Diffusion Virtual Element Method for Convection-Dominated Diff usion Problems [J].
Li, Yuxia ;
Xie, Cong ;
Feng, Xinglong .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (01) :158-180
[26]   THE IMPLICIT CLOSEST POINT METHOD FOR THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS ON SURFACES [J].
Macdonald, Colin B. ;
Ruuth, Steven J. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06) :4330-4350
[27]   ACTIVE PULSE TRANSMISSION LINE SIMULATING NERVE AXON [J].
NAGUMO, J ;
ARIMOTO, S ;
YOSHIZAWA, S .
PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1962, 50 (10) :2061-&
[28]   A FINITE ELEMENT METHOD FOR THE SURFACE STOKES PROBLEM [J].
Olshanskii, Maxim A. ;
Quaini, Annalisa ;
Reusken, Arnold ;
Yushutin, Vladimir .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (04) :A2492-A2518
[29]   A FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS ON SURFACES [J].
Olshanskii, Maxim A. ;
Reusken, Arnold ;
Grande, Joerg .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) :3339-3358
[30]   A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction-Diffusion Equations on Surfaces [J].
Shankar, Varun ;
Wright, Grady B. ;
Kirby, Robert M. ;
Fogelson, Aaron L. .
JOURNAL OF SCIENTIFIC COMPUTING, 2015, 63 (03) :745-768