Local tangential lifting virtual element method for the diffusion-reaction equation on the non-flat Voronoi discretized surface

被引:1
作者
Li, Jingwei [1 ,2 ,3 ]
Feng, Xinlong [1 ]
He, Yinnian [1 ,4 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Beijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
基金
中国博士后科学基金;
关键词
Surface virtual element method; Local tangential lifting method; Non-flat Voronoi discretized surface; Diffusion-reaction equation; Local coordinate system; MODELS; PDES;
D O I
10.1007/s00366-021-01595-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose the surface virtual element method (SVEM) combining with the local tangential lifting technique (LTL) to solve the diffusion-reaction (DR) equation on the non-flat Voronoi discretized surface embedded in R-3. It has been a challenge on how to design the efficient numerical method to treat the non-flat discretized surface in comparison with the easy construction of flat discretized surface. Limited to the linear virtual element space, we derive the computable virtual element form of the non-flat Voronoi discretized surface by lifting the Voronoi element into the tangential plane. We demonstrate that this method developed here presents a good numerical simulation on a wide variety of polygonal discretized surfaces. Finally, numerical experiments are carried out to show the efficiency of the proposed method.
引用
收藏
页码:5297 / 5307
页数:11
相关论文
共 49 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]   A C1 VIRTUAL ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION WITH POLYGONAL MESHES [J].
Antonietti, P. F. ;
Da Veiga, L. Beirao ;
Scacchi, S. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) :34-56
[3]   THE NONCONFORMING VIRTUAL ELEMENT METHOD FOR THE STOKES EQUATIONS [J].
Cangiani, Andrea ;
Gyrya, Vitaliy ;
Manzini, Gianmarco .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) :3411-3435
[4]  
Chatzipantelidis P, 2012, MATH COMPUT, V81, P1
[5]   THE LUMPED MASS FINITE-ELEMENT METHOD FOR A PARABOLIC PROBLEM [J].
CHEN, CM ;
THOMEE, V .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1985, 26 (JAN) :329-354
[6]   DISCRETE CONSERVATION LAWS ON CURVED SURFACES [J].
Chen, Sheng-Gwo ;
Wu, Jyh-Yang .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (02) :A719-A739
[7]   The Hitchhiker's Guide to the Virtual Element Method [J].
da Veiga, L. Beirao ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (08) :1541-1573
[8]   BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS [J].
da Veiga, L. Beirao ;
Brezzi, F. ;
Cangiani, A. ;
Manzini, G. ;
Marini, L. D. ;
Russo, A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (01) :199-214
[9]   THE NONCONFORMING VIRTUAL ELEMENT METHOD [J].
de Dios, Blanca Ayuso ;
Lipnikov, Konstantin ;
Manzini, Gianmarco .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2016, 50 (03) :879-904
[10]  
Demanet Laurent., 2006, PAINLESS HIGHLY ACCU