Singular Moduli of Shimura Curves

被引:7
作者
Errthum, Eric [1 ]
机构
[1] Winona State Univ, Dept Math & Stat, Winona, MN 55987 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2011年 / 63卷 / 04期
关键词
EISENSTEIN SERIES; BORCHERDS FORMS;
D O I
10.4153/CJM-2011-023-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The j-function acts as a parametrization of the classical modular curve. Its values at complex multiplication (CM) points are called singular moduli and are algebraic integers. A Shimura curve is a generalization of the modular curve and, if the Shimura curve has genus 0, a rational parameterizing function exists and when evaluated at a CM point is again algebraic over Q. This paper shows that the coordinate maps given by N. Elides for the Shimura curves associated to the quaternion algebras with discriminants 6 and 10 are Borcherds lifts of vector-valued modular forms. This property is then used to explicitly compute the rational norms of singular moduli on these curves. This method not only verifies conjectural values for the rational CM points, but also provides a way of algebraically calculating the norms of CM points with arbitrarily large negative discriminant.
引用
收藏
页码:826 / 861
页数:36
相关论文
共 16 条
[1]  
Alsina M., 2004, CRM MONOGRAPH SERIES, V22
[2]  
[Anonymous], 1980, LECT NOTES MATH
[3]   Genus 2 curves with quaternionic multiplication [J].
Baba, Srinath ;
Granath, Hakan .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (04) :734-757
[4]  
Barnard A. G., 2003, THESIS U CALIFORNIA
[5]   Automorphic forms with singularities on Grassmannians [J].
Borcherds, RE .
INVENTIONES MATHEMATICAE, 1998, 132 (03) :491-562
[6]   Reflection groups of Lorentzian lattices [J].
Borcherds, RE .
DUKE MATHEMATICAL JOURNAL, 2000, 104 (02) :319-366
[7]  
Cremona J. E., 1992, ALGORITHMS MODULAR E
[8]  
Elkies N., 1998, Lecture Notes in Comput. Sci., V1423, P1
[9]  
GROSS BH, 1985, J REINE ANGEW MATH, V355, P191
[10]  
Johansson S, 2000, MATH COMPUT, V69, P339, DOI 10.1090/S0025-5718-99-01167-9