Analysis of a spatial Lotka-Volterra model with a finite range predator-prey interaction

被引:9
|
作者
Brigatti, E. [1 ,2 ]
Nunez-Lopez, M. [3 ]
Oliva, M. [4 ]
机构
[1] Univ Fed Fluminense, Inst Cincias Exatas, Volta Redonda, RJ, Brazil
[2] Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ, Brazil
[3] Inst Mexicano Petr, Mexico City 07730, DF, Mexico
[4] Univ La Habana, Fac Fis, Havana 10400, Cuba
关键词
PATTERN-FORMATION; SIMILARITY; DYNAMICS; SYSTEM; COMPETITION; SPECIATION;
D O I
10.1140/epjb/e2011-10826-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We perform an analysis of a recent spatial version of the classical Lotka-Volterra model, where a finite scale controls individuals' interaction. We study the behavior of the predator-prey dynamics in physical spaces higher than one, showing how spatial patterns can emerge for some values of the interaction range and of the diffusion parameter.
引用
收藏
页码:321 / 326
页数:6
相关论文
共 50 条
  • [41] Rich dynamics of a predator-prey model with spatial motion
    Wang, Caiyun
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 260 : 1 - 9
  • [42] Rich dynamics in a spatial predator-prey model with delay
    Chang, Lili
    Sun, Gui-Quan
    Wang, Zhen
    Jin, Zhen
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 540 - 550
  • [43] Spatial pattern formation of a ratio-dependent predator-prey model
    Lin Wang
    CHINESE PHYSICS B, 2010, 19 (09)
  • [44] Spatial Complexity of a Predator-Prey Model with Holling-Type Response
    Zhang, Lei
    Li, Zhibin
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [45] Approximate Analytical Expression of Diffusive Lotka-Volterra Prey-Predator Equations via Variational Iteration Method
    Govindaraj, Suganya
    Rathinam, Senthamarai
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2022, 11 (03) : 741 - 753
  • [46] BIFURCATION ANALYSIS OF A DELAYED PREDATOR-PREY MODEL OF PREY MIGRATION AND PREDATOR SWITCHING
    Xu, Changjin
    Tang, Xianhua
    Liao, Maoxin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (02) : 353 - 373
  • [47] Positive solutions for a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response
    Zhou Jun
    Kim, Chan-Gyun
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (05) : 991 - 1010
  • [48] Diffusion has no influence on the global asymptotical stability of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuges
    Yang, Wensheng
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 223 : 278 - 280
  • [49] Derivation and Analysis of a Discrete Predator-Prey Model
    Streipert, Sabrina H.
    Wolkowicz, Gail S. K.
    Bohner, Martin
    BULLETIN OF MATHEMATICAL BIOLOGY, 2022, 84 (07)
  • [50] Bifurcation analysis of an intraguild predator-prey model
    Narimani, Hajar
    Ghaziani, Reza Khoshsiar
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04)