Analysis of a spatial Lotka-Volterra model with a finite range predator-prey interaction

被引:9
|
作者
Brigatti, E. [1 ,2 ]
Nunez-Lopez, M. [3 ]
Oliva, M. [4 ]
机构
[1] Univ Fed Fluminense, Inst Cincias Exatas, Volta Redonda, RJ, Brazil
[2] Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ, Brazil
[3] Inst Mexicano Petr, Mexico City 07730, DF, Mexico
[4] Univ La Habana, Fac Fis, Havana 10400, Cuba
来源
EUROPEAN PHYSICAL JOURNAL B | 2011年 / 81卷 / 03期
关键词
PATTERN-FORMATION; SIMILARITY; DYNAMICS; SYSTEM; COMPETITION; SPECIATION;
D O I
10.1140/epjb/e2011-10826-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We perform an analysis of a recent spatial version of the classical Lotka-Volterra model, where a finite scale controls individuals' interaction. We study the behavior of the predator-prey dynamics in physical spaces higher than one, showing how spatial patterns can emerge for some values of the interaction range and of the diffusion parameter.
引用
收藏
页码:321 / 326
页数:6
相关论文
共 50 条
  • [31] Pattern formation in a predator-prey system characterized by a spatial scale of interaction
    Brigatti, E.
    Oliva, M.
    Nunez-Lopez, M.
    Oliveros-Ramos, R.
    Benavides, J.
    EPL, 2009, 88 (06)
  • [32] Facilitation of intraguild prey by its intraguild predator in a three-species Lotka-Volterra model
    Shchekinova, Elena Y.
    Loeder, Martin G. J.
    Boersma, Maarten
    Wiltshire, Karen H.
    THEORETICAL POPULATION BIOLOGY, 2014, 92 : 55 - 61
  • [33] Analysis of a spatial predator-prey model with delay
    Wang, Biao
    Wang, Ai-Ling
    Liu, Yong-Jiang
    Liu, Zhao-Hua
    NONLINEAR DYNAMICS, 2010, 62 (03) : 601 - 608
  • [34] Spatial patterns of a predator-prey model with cross diffusion
    Sun, Gui-Quan
    Jin, Zhen
    Li, Li
    Haque, Mainul
    Li, Bai-Lian
    NONLINEAR DYNAMICS, 2012, 69 (04) : 1631 - 1638
  • [35] On a Lotka-Volterra competition model: the effects of advection and spatial variation
    Zhao, Xiao-Qiang
    Zhou, Peng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)
  • [36] Positive Solutions for a Lotka-Volterra Prey-Predator Model with Cross-Diffusion of Fractional Type
    Jun, Zhou
    Kim, Chan-Gyun
    RESULTS IN MATHEMATICS, 2014, 65 (3-4) : 293 - 320
  • [37] Global asymptotical stability of the positive equilibrium of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuges
    Chen, Fengde
    Ma, Zhaozhi
    Zhang, Huiying
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (06) : 2790 - 2793
  • [38] Dynamics analysis of a diffusive predator-prey model with spatial memory and nonlocal fear effect
    Zhang, Xuebing
    Zhu, Honglan
    An, Qi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 525 (01)
  • [39] Interaction networks in persistent Lotka-Volterra communities
    Poley, Lyle
    Galla, Tobias
    Baron, Joseph W.
    PHYSICAL REVIEW E, 2025, 111 (01)
  • [40] Fixed points stability, bifurcation analysis, and chaos control of a Lotka-Volterra model with two predators and their prey
    Abbasi, Muhammad Aqib
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024, 17 (04)