Analysis of a spatial Lotka-Volterra model with a finite range predator-prey interaction

被引:9
|
作者
Brigatti, E. [1 ,2 ]
Nunez-Lopez, M. [3 ]
Oliva, M. [4 ]
机构
[1] Univ Fed Fluminense, Inst Cincias Exatas, Volta Redonda, RJ, Brazil
[2] Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ, Brazil
[3] Inst Mexicano Petr, Mexico City 07730, DF, Mexico
[4] Univ La Habana, Fac Fis, Havana 10400, Cuba
来源
EUROPEAN PHYSICAL JOURNAL B | 2011年 / 81卷 / 03期
关键词
PATTERN-FORMATION; SIMILARITY; DYNAMICS; SYSTEM; COMPETITION; SPECIATION;
D O I
10.1140/epjb/e2011-10826-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We perform an analysis of a recent spatial version of the classical Lotka-Volterra model, where a finite scale controls individuals' interaction. We study the behavior of the predator-prey dynamics in physical spaces higher than one, showing how spatial patterns can emerge for some values of the interaction range and of the diffusion parameter.
引用
收藏
页码:321 / 326
页数:6
相关论文
共 50 条
  • [11] A New Approach to Global Stability of Discrete Lotka-Volterra Predator-Prey Models
    Kim, Young-Hee
    Choo, Sangmok
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [12] Attraction Region for the Classical Lotka-Volterra Predator-Prey model Caused by impulsive Effects
    Sugie, Jitsuro
    Ishihara, Yoshiki
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (02)
  • [13] Hybrid control of Hopf bifurcation in a Lotka-Volterra predator-prey model with two delays
    Peng, Miao
    Zhang, Zhengdi
    Wang, Xuedi
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [14] Stability of synchronized steady state solution of diffusive Lotka-Volterra predator-prey model
    Huang, Yongyan
    Li, Fuyi
    Shi, Junping
    APPLIED MATHEMATICS LETTERS, 2020, 105
  • [15] Conditions for persistence and ergodicity of a stochastic Lotka-Volterra predator-prey model with regime switching
    Zu, Li
    Jiang, Daqing
    O'Regan, Donal
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 29 (1-3) : 1 - 11
  • [16] Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics
    Xiang, Tian
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 39 : 278 - 299
  • [17] GLOBAL HOPF BRANCHES AND MULTIPLE LIMIT CYCLES IN A DELAYED LOTKA-VOLTERRA PREDATOR-PREY MODEL
    Li, Michael Y.
    Lin, Xihui
    Wang, Hao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (03): : 747 - 760
  • [18] Periodic solution for a non-autonomous Lotka-Volterra predator-prey model with random perturbation
    Zu, Li
    Jiang, Daqing
    O'Regan, Donal
    Ge, Bin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 428 - 437
  • [19] STATIONARY DISTRIBUTION AND PERMANENCE OF A STOCHASTIC DELAY PREDATOR-PREY LOTKA-VOLTERRA MODEL WITH LEVY JUMPS
    Lu, Chun
    Ding, Xiaohua
    Zhang, Lei
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (04): : 1328 - 1352
  • [20] Extended Lotka-Volterra equations incorporating population heterogeneity: Derivation and analysis of the predator-prey case
    Waters, Edward K.
    Sidhu, Harvinder S.
    Sidhu, Leesa A.
    Mercer, Geoffry N.
    ECOLOGICAL MODELLING, 2015, 297 : 187 - 195