Fast and scalable synthesis of durable Na0.44MnO2 cathode material via an oxalate precursor method for Na-ion batteries

被引:43
作者
Zhang, Ding [1 ]
Shi, Wen-jing [1 ]
Yan, Yong-wang [1 ]
Xu, Shou-dong [1 ]
Chen, Liang [1 ]
Wang, Xiao-min [2 ]
Liu, Shi-bin [1 ]
机构
[1] Taiyuan Univ Technol, Coll Chem & Chem Engn, Lab Green Energy Mat & Storage Syst, Taiyuan 030024, Shanxi, Peoples R China
[2] Taiyuan Univ Technol, Coll Mat Sci & Engn, Lab Green Energy Mat & Storage Syst, Taiyuan 030024, Shanxi, Peoples R China
关键词
Sodium ion batteries; Cathode material; Na0.44MnO2; Oxalate precursor; SINGLE-CRYSTALLINE NA0.44MNO2; ELECTROCHEMICAL PROPERTIES; SODIUM INTERCALATION; ELECTRODE MATERIALS; MANGANESE OXIDE; PERFORMANCE; LITHIUM; NANOWIRES; PHASES; INSERTION/DEINSERTION;
D O I
10.1016/j.electacta.2017.11.155
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Na0.44MnO2 has aroused global interest as a promising cathode material for sodium ion batteries due to its unique tunnel structure. Rod-like Na0.44MnO2 is synthesized here via a simple, fast and environment-friendly oxalate precursor-based process, and the electrochemical performances, as well as the structural evolution within the electrode redox process and the chemical mechanism for material synthesis, are systematically investigated. The Na0.44MnO2 material prepared at 900 degrees C for 3 h (denoted as NMO-9003) possesses the highest reversible capacity of 120 mAh g(-1) at 0.2 C and an optimal rate capacity of 106 mAh g-1 at 1 C, while its long-term capacity retention is 86% after 500 cycles at 20 C, indicating superior structural reversibility. In addition, the NMO-9003 sample shows the fastest cationic diffusion rate at approximately 1.2 x 10(-13) cm(2) s(-1). The density functional theory (DFT)-based calculation is adopted to explore the lattice variation of Na0.44MnO2 upon the electrode process, which confirms that the host structure bears a minor volume change approximately 7% from 2.0 to 3.8 V, well demonstrating the origin of excellent reversibility. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1035 / 1043
页数:9
相关论文
共 48 条
[1]   Single-Crystal Synthesis and Structure Refinement of Na0.44MnO2 [J].
Akimoto, Junji ;
Hayakawa, Hiroshi ;
Kijima, Norihito ;
Awaka, Junji ;
Funabiki, Fuji .
SOLID COMPOUNDS OF TRANSITION ELEMENTS, 2011, 170 :198-202
[2]   Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life [J].
Cao, Yuliang ;
Xiao, Lifen ;
Wang, Wei ;
Choi, Daiwon ;
Nie, Zimin ;
Yu, Jianguo ;
Saraf, Laxmikant V. ;
Yang, Zhenguo ;
Liu, Jun .
ADVANCED MATERIALS, 2011, 23 (28) :3155-+
[3]   Crystal chemistry of Na insertion/deinsertion in FePO4-NaFePO4 [J].
Casas-Cabanas, Montse ;
Roddatis, Vladimir V. ;
Saurel, Damien ;
Kubiak, Pierre ;
Carretero-Gonzalez, Javier ;
Palomares, Veronica ;
Serras, Paula ;
Rojo, Teofilo .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (34) :17421-17423
[4]   Na0.44MnO2 with very fast sodium diffusion and stable cycling synthesized via polyvinylpyrrolidone-combustion method [J].
Dai, Kehua ;
Mao, Jing ;
Song, Xiangyun ;
Battaglia, Vince ;
Liu, Gao .
JOURNAL OF POWER SOURCES, 2015, 285 :161-168
[5]   Growth mechanism and magnetic and electrochemical properties of Na0.44MnO2 nanorods as cathode material for Na-ion batteries [J].
Demirel, S. ;
Oz, E. ;
Altin, E. ;
Altin, S. ;
Bayri, A. ;
Kaya, P. ;
Turan, S. ;
Avci, S. .
MATERIALS CHARACTERIZATION, 2015, 105 :104-112
[6]   Synthesis and characterization of a copper-substituted manganese oxide with the Na0.44MnO2 structure [J].
Doeff, MM ;
Richardson, TJ ;
Hollingsworth, J ;
Yuan, CW ;
Gonzales, M .
JOURNAL OF POWER SOURCES, 2002, 112 (01) :294-297
[7]   Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries [J].
Du, Ke ;
Guo, Hongwei ;
Hu, Guorong ;
Peng, Zhongdong ;
Cao, Yanbing .
JOURNAL OF POWER SOURCES, 2013, 223 :284-288
[8]   A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries [J].
Ellis, B. L. ;
Makahnouk, W. R. M. ;
Makimura, Y. ;
Toghill, K. ;
Nazar, L. F. .
NATURE MATERIALS, 2007, 6 (10) :749-753
[9]   Sodium and sodium-ion energy storage batteries [J].
Ellis, Brian L. ;
Nazar, Linda F. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) :168-177
[10]   High-rate performance electrospun Na0.44MnO2 nanofibers as cathode material for sodium-ion batteries [J].
Fu, Bi ;
Zhou, Xuan ;
Wang, Yaping .
JOURNAL OF POWER SOURCES, 2016, 310 :102-108