Intrinsic and extrinsic performance limits of graphene devices on SiO2

被引:2606
作者
Chen, Jian-Hao [1 ,2 ,3 ]
Jang, Chaun [2 ,3 ]
Xiao, Shudong [2 ,3 ]
Ishigami, Masa [2 ,3 ]
Fuhrer, Michael S. [1 ,2 ,3 ]
机构
[1] Univ Maryland, Mat Res Sci & Engn Ctr, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[3] Univ Maryland, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nnano.2008.58
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The linear dispersion relation in graphene(1,2) gives rise to a surprising prediction: the resistivity due to isotropic scatterers, such as white-noise disorder(3) or phonons(4-8), is independent of carrier density, n. Here we show that electron-acoustic phonon scattering(4-6) is indeed independent of n, and contributes only 30 V to graphene's room-temperature resistivity. At a technologically relevant carrier density of 1 x10(12) cm(-2), we infer a mean free path for electron-acoustic phonon scattering of > 2 mm and an intrinsic mobility limit of 2 x 10(5) cm(2) V-1 s(-1). If realized, this mobility would exceed that of InSb, the inorganic semiconductor with the highest known mobility ( similar to 7.7 x 10(4) cm(2) V-1 s(-1); ref. 9) and that of semiconducting carbon nanotubes ( similar to 1 x 10(5) cm(2) V-1 s(-1); ref. 10). A strongly temperature-dependent resistivity contribution is observed above similar to 200 K ( ref. 8); its magnitude, temperature dependence and carrier-density dependence are consistent with extrinsic scattering by surface phonons at the SiO2 substrate11,12 and limit the room-temperature mobility to similar to 4 x 10(4) cm(2) V-1 s(-1), indicating the importance of substrate choice for graphene devices13.
引用
收藏
页码:206 / 209
页数:4
相关论文
共 30 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   Antimonide-based compound semiconductors for electronic devices: A review [J].
Bennett, BR ;
Magno, R ;
Boos, JB ;
Kruppa, W ;
Ancona, MG .
SOLID-STATE ELECTRONICS, 2005, 49 (12) :1875-1895
[3]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[4]  
CHEN JH, IN PRESS NATURE PHYS
[5]   Printed graphene circuits [J].
Chen, Jian-Hao ;
Ishigami, Masa ;
Jang, Chaun ;
Hines, Daniel R. ;
Fuhrer, Michael S. ;
Williams, Ellen D. .
ADVANCED MATERIALS, 2007, 19 (21) :3623-3627
[6]   Extraordinary mobility in semiconducting carbon nanotubes [J].
Durkop, T ;
Getty, SA ;
Cobas, E ;
Fuhrer, MS .
NANO LETTERS, 2004, 4 (01) :35-39
[7]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[8]   Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-κ insulator:: The role of remote phonon scattering [J].
Fischetti, MV ;
Neumayer, DA ;
Cartier, EA .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (09) :4587-4608
[9]  
FRATINI S, 2007, SUBSTRATET LIMITED E, P1303
[10]  
HESS K, 1979, SOLID STATE COMMUN, V30, P807, DOI 10.1016/0038-1098(79)90051-6