Reducing Subspaces of Multiplication Operators on the Dirichlet Space

被引:15
作者
Luo, Shuaibing [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
关键词
Dirichlet space; Reducing subspaces; Finite Blaschke products; BERGMAN SPACE; ANALYTIC MULTIPLIERS; UNITARY EQUIVALENCE; TOEPLITZ-OPERATORS; HARDY SPACE; REDUCIBILITY; BIDISK; FORMS;
D O I
10.1007/s00020-016-2295-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the reducing subspaces for the multiplication operator by a finite Blaschke product phi on the Dirichlet space D. We prove that any two distinct nontrivial minimal reducing subspaces of M-phi are orthogonal. When the order n of phi is 2 or 3, we show that M-phi is reducible on D if and only if phi is equivalent to z(n). When the order of phi is 4, we determine the reducing subspaces for M-phi, and we see that in this case M-phi can be reducible on D when phi is not equivalent to z(4). The same phenomenon happens when the order n of phi is not a prime number. Furthermore, we show that M-phi is unitarily equivalent to M-zn (n > 1) on D if and only if phi = az(n) for some unimodular constant a.
引用
收藏
页码:539 / 554
页数:16
相关论文
共 25 条
[1]   Function spaces related to the Dirichlet space [J].
Arcozzi, N. ;
Rochberg, R. ;
Sawyer, E. ;
Wick, B. D. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 83 :1-18
[2]  
Arcozzi N, 2011, NEW YORK J MATH, V17A, P45
[3]   BILINEAR FORMS ON THE DIRICHLET SPACE [J].
Arcozzi, Nicola ;
Rochberg, Richard ;
Sawyer, Eric ;
Wick, Brett D. .
ANALYSIS & PDE, 2010, 3 (01) :21-47
[4]   Reducibility and unitary equivalence for a class of multiplication operators on the Dirichlet space [J].
Chen, Yong ;
Lee, Young Joo ;
Yu, Tao .
STUDIA MATHEMATICA, 2014, 220 (02) :141-156
[5]   Reducibility and Unitarily Equivalence for a Class of Analytic Multipliers on the Dirichlet Space [J].
Chen, Yong ;
Xu, Huiming .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (06) :1897-1908
[6]   Reducing subspaces for analytic multipliers of the Bergman space [J].
Douglas, Ronald G. ;
Putinar, Mihai ;
Wang, Kai .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (06) :1744-1765
[7]   On the Brown-Shields conjecture for cyclicity in the Dirichlet space [J].
El-Fallah, Omar ;
Kellay, Karim ;
Ransford, Thomas .
ADVANCES IN MATHEMATICS, 2009, 222 (06) :2196-2214
[8]  
Guo K, 2015, LECT NOTES MATH
[9]  
Guo KY, 2011, J OPERAT THEOR, V65, P355
[10]   Rudin orthogonality problem on the Bergman space [J].
Guo, Kunyu ;
Zheng, Dechao .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (01) :51-68