Incremental novelty detection and fault identification scheme applied to a kinematic chain under non-stationary operation

被引:8
作者
Carino, J. A. [1 ]
Delgado-Prieto, M. [1 ]
Zurita, D. [1 ]
Picot, A. [2 ]
Ortega, J. A. [1 ]
Romero-Troncoso, R. J. [3 ]
机构
[1] Tech Univ Catalonia, MCIA Res Ctr, Terrassa, Spain
[2] Univ Tolouse, Lab Plasma & Convers Energie, Toulouse, France
[3] Autonomous Univ Queretaro, HSPdigital, San Juan Del Rio, Mexico
关键词
Condition monitoring; Data-driven modelling; Fault diagnosis; Non-stationary operation; Novelty detection; DIAGNOSIS; MECHANISM;
D O I
10.1016/j.isatra.2019.07.025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Classical methods for monitoring electromechanical systems lack two critical functions for effective industrial application: management of unexpected events and the incorporation of new patterns into the knowledge database. This study presents a novel, high-performance condition-monitoring method based on a four-stage incremental learning approach. First, non-stationary operation is characterised using normalised time-frequency maps. Second, operating novelties are detected using multivariate kernel density estimators. Third, the operating novelties are characterised and labelled to increase the knowledge available for subsequent diagnosis. Fourth, operating faults are diagnosed and classified using neural networks. The proposed method is validated experimentally with an industrial camshaft-based machine under a variety of operating conditions. (C) 2019 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:76 / 85
页数:10
相关论文
共 30 条
[1]   FDI based on Artificial Neural Network for Low-Voltage-Ride-Through in DFIG-based Wind Turbine [J].
Adouni, Amel ;
Chariag, Dhia ;
Diallo, Demba ;
Ben Hamed, Mouna ;
Sbita, Lassaad .
ISA TRANSACTIONS, 2016, 64 :353-364
[2]   Scale Invariant Feature Extraction Algorithm for the Automatic Diagnosis of Rotor Asymmetries in Induction Motors [J].
Antonino-Daviu, Jose ;
Aviyente, Selin ;
Strangas, Elias G. ;
Riera-Guasp, Martin .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (01) :100-108
[3]   An evolving approach to unsupervised and Real-Time fault detection in industrial processes [J].
Bezerra, Clauber Gomes ;
Jales Costa, Bruno Sielly ;
Guedes, Luiz Affonso ;
Angelov, Plamen Parvanov .
EXPERT SYSTEMS WITH APPLICATIONS, 2016, 63 :134-144
[4]   Rotor-Bar Breakage Mechanism and Prognosis in an Induction Motor [J].
Climente-Alarcon, Vicente ;
Alfonso Antonino-Daviu, Jose ;
Strangas, Elias G. ;
Riera-Guasp, Martin .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (03) :1814-1825
[5]   An experimental evaluation of novelty detection methods [J].
Ding, Xuemei ;
Li, Yuhua ;
Belatreche, Ammar ;
Maguire, Liam P. .
NEUROCOMPUTING, 2014, 135 :313-327
[6]   Advanced Eccentricity Fault Recognition in Permanent Magnet Synchronous Motors Using Stator Current Signature Analysis [J].
Ebrahimi, Bashir Mahdi ;
Roshtkhari, Mehrsan Javan ;
Faiz, Jawad ;
Khatami, Seyed Vahid .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (04) :2041-2052
[7]   An Industrial Strength Novelty Detection Framework for Autonomous Equipment Monitoring and Diagnostics [J].
Filev, Dimitar P. ;
Chinnam, Ratna Babu ;
Tseng, Finn ;
Baruah, Pundarikaksha .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2010, 6 (04) :767-779
[8]  
Gao Z., 2015, IEEE T IND ELECTRON, V62, P3768, DOI DOI 10.1109/TIE.2015.2419013
[9]   Cold Start Approach for Data-Driven Fault Detection [J].
Grbovic, Mihajlo ;
Li, Weichang ;
Subrahmanya, Niranjan A. ;
Usadi, Adam K. ;
Vucetic, Slobodan .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (04) :2264-2273
[10]   Plastic Bearing Fault Diagnosis Based on a Two-Step Data Mining Approach [J].
He, David ;
Li, Ruoyu ;
Zhu, Junda .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (08) :3429-3440