2D patch antenna array on a double metal quantum cascade laser with >90% coupling to a Gaussian beam and selectable facet transparency at 1.9 THz

被引:17
作者
Justen, Matthias [1 ]
Bonzon, Christopher [2 ]
Ohtani, Keita [2 ]
Beck, Mathias [2 ]
Graf, Urs [2 ]
Faist, Jerome [2 ]
机构
[1] Univ Cologne, Inst Phys, D-50937 Cologne, Germany
[2] Swiss Fed Inst Technol, Inst Quantum Elect, CH-8093 Zurich, Switzerland
关键词
Antenna feeders - Couplings - Gaussian beams - Q factor measurement - Antenna arrays - Microstrip antennas - Quantum cascade lasers - Slot antennas;
D O I
10.1364/OL.41.004590
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
2 x 2 parallel fed and 3 x 3 serial fed patch antenna arrays on a benzocyclobutene (BCB) polymer layer are integrated with a 70 mu m wide, dry etched, double metal waveguide quantum cascade laser, operating at about 1.9 THz. The BCB surrounds the quantum cascade laser ridge and is planarized to fit precisely its height. The patch antenna arrays emit a linearly polarized, highly symmetric beam perpendicular to the antenna plane. The beams have a FWHM angle of 49 degrees (2 x 2) and 35 degrees (3 x 3). Both measurements and simulations indicate coupling factors to a Gaussian beam of over 90%. The antenna design is strongly governed by the high thickness (h = 13.6 mu m) and the low dielectric constant (epsilon(r) = 2.45) of the BCB substrate. Because the patch array has a very low input reflectivity of -13 to -20 dB over the 1.7-2.1 THz operation band, the laser needs a partially transmitting reflector to maintain the Q-factor of the active medium resonator to assure lasing in the antennas operation band. By changing the dimensions of the reflector, the facet transparency can be designed in a wide range from fully transmissive to highly reflective. (C) 2016 Optical Society of America
引用
收藏
页码:4590 / 4592
页数:3
相关论文
共 20 条
[1]   Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions [J].
Adam, AJL ;
Kasalynas, I ;
Hovenier, JN ;
Klaassen, TO ;
Gao, JR ;
Orlova, EE ;
Williams, BS ;
Kumar, S ;
Hu, Q ;
Reno, JL .
APPLIED PHYSICS LETTERS, 2006, 88 (15)
[2]   Horn antennas for terahertz quantum cascade lasers [J].
Amanti, M. I. ;
Fischer, M. ;
Walther, C. ;
Scalari, G. ;
Faist, J. .
ELECTRONICS LETTERS, 2007, 43 (10) :573-574
[3]   Low-divergence single-mode terahertz quantum cascade laser [J].
Amanti, M. I. ;
Fischer, M. ;
Scalari, G. ;
Beck, M. ;
Faist, J. .
NATURE PHOTONICS, 2009, 3 (10) :586-590
[4]   Integrated patch and slot array antenna for terahertz quantum cascade lasers at 4.7 THz [J].
Bonzon, C. ;
Chelmus, I. C. Benea ;
Ohtani, K. ;
Geiser, M. ;
Beck, M. ;
Faist, J. .
APPLIED PHYSICS LETTERS, 2014, 104 (16)
[5]  
Goldsmith P.F., 1998, QUASIOPTICAL SYSTEMS, DOI DOI 10.1109/9780470546291
[6]  
Justen M., IEEE T TERAHER UNPUB
[7]   Antenna coupled photonic wire lasers [J].
Kao, Tsung-Yu ;
Cai, Xiaowei ;
Lee, Alan W. M. ;
Reno, John L. ;
Hu, Qing .
OPTICS EXPRESS, 2015, 23 (13) :17091-17100
[8]   Terahertz semiconductor-heterostructure laser [J].
Köhler, R ;
Tredicucci, A ;
Beltram, F ;
Beere, HE ;
Linfield, EH ;
Davies, AG ;
Ritchie, DA ;
Iotti, RC ;
Rossi, F .
NATURE, 2002, 417 (6885) :156-159
[9]  
Kumar G., 2003, BROADBAND MICROSTRIP
[10]   High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides [J].
Lee, Alan Wei Min ;
Qin, Qi ;
Kumar, Sushil ;
Williams, Benjamin S. ;
Hu, Qing ;
Reno, John L. .
OPTICS LETTERS, 2007, 32 (19) :2840-2842