Evaluation of RGB and LiDAR Combination for Robust Place Recognition

被引:0
|
作者
Alijani, Farid [1 ]
Peltomaki, Jukka [1 ]
Puura, Jussi [2 ]
Huttunen, Heikki [3 ]
Kamarainen, Joni-Kristian [1 ]
Rahtu, Esa [1 ]
机构
[1] Tampere Univ, Tampere, Finland
[2] Sandvik Min & Construct Ltd, Tampere, Finland
[3] Visy Oy, Tampere, Finland
关键词
Visual Place Recognition; Image Retrieval; Deep Convolutional Neural Network; Deep Learning for Visual Understanding; LOCALIZATION; FEATURES;
D O I
10.5220/0010909100003124
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Place recognition is one of the main challenges in localization, mapping and navigation tasks of self-driving vehicles under various perceptual conditions, including appearance and viewpoint variations. In this paper, we provide a comprehensive study on the utility of fine-tuned Deep Convolutional Neural Network (DCNN) with three MAC, SpoC and GeM pooling layers to learn global image representation for place recognition in an end-to-end manner using three different sensor data modalities: (1) only RGB images; (2) only intensity or only depth 3D LiDAR point clouds projected into 2D images and (3) early fusion of RGB images and LiDAR point clouds (both intensity and depth) to form a unified global descriptor to leverage robust features of both modalities. The experimental results on a diverse and large long-term Oxford Radar RobotCar dataset illustrate an achievement of 5 m outdoor place recognition accuracy with high recall rate of 90 using early fusion of RGB and LiDAR sensor data modalities when fine-tuned network with GeM pooling layer is utilized.
引用
收藏
页码:650 / 658
页数:9
相关论文
共 50 条
  • [1] Robust Place Recognition using an Imaging Lidar
    Shan, Tixiao
    Englot, Brendan
    Duarte, Fabio
    Ratti, Carlo
    Rus, Daniela
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 5469 - 5475
  • [2] Local Descriptor for Robust Place Recognition Using LiDAR Intensity
    Guo, Jiadong
    Borges, Paulo V. K.
    Park, Chanoh
    Gawel, Abel
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02) : 1470 - 1477
  • [3] Evaluation of Long-term LiDAR Place Recognition
    Peltomaki, Jukka
    Alijani, Farid
    Puura, Jussi
    Huttunen, Heikki
    Rahtu, Esa
    Kamarainen, Joni-Kristian
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 4487 - 4492
  • [4] A Fast and Robust Place Recognition Approach for Stereo Visual Odometry Using LiDAR Descriptors
    Mo, Jiawei
    Sattar, Junaed
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 5893 - 5900
  • [5] Keypoint design and evaluation for place recognition in 2D lidar maps
    Bosse, Michael
    Zlot, Robert
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2009, 57 (12) : 1211 - 1224
  • [6] Multimodal Features and Accurate Place Recognition With Robust Optimization for Lidar-Visual-Inertial SLAM
    Zhao, Xiongwei
    Wen, Congcong
    Manoj Prakhya, Sai
    Yin, Hongpei
    Zhou, Rundong
    Sun, Yijiao
    Xu, Jie
    Bai, Haojie
    Wang, Yang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 1
  • [7] Context for LiDAR-based Place Recognition
    Li, Jiahao
    Qian, Hui
    Du, Xin
    2023 21ST INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS, ICAR, 2023, : 107 - 112
  • [8] Robust Place Recognition with Stereo Cameras
    Cadena, Cesar
    Galvez-Lopez, Dorian
    Ramos, Fabio
    Tardos, Juan D.
    Neira, Jose
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, : 5182 - 5189
  • [9] Robust Place Recognition With Stereo Sequences
    Cadena, Cesar
    Galvez-Lopez, Dorian
    Tardos, Juan D.
    Neira, Jose
    IEEE TRANSACTIONS ON ROBOTICS, 2012, 28 (04) : 871 - 885
  • [10] CCL: Continual Contrastive Learning for LiDAR Place Recognition
    Cui, Jiafeng
    Chen, Xieyuanli
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (08) : 4433 - 4440