Global Landscape and Dynamics of Parkin and USP30-Dependent Ubiquitylomes in iNeurons during Mitophagic Signaling

被引:131
作者
Ordureau, Alban [1 ]
Paulo, Joao A. [1 ]
Zhang, Jiuchun [1 ]
An, Heeseon [1 ]
Swatek, Kirby N. [2 ,3 ]
Cannon, Joe R. [1 ,6 ]
Wan, Qiaoqiao [1 ]
Komander, David [3 ,4 ,5 ]
Harper, J. Wade [1 ]
机构
[1] Harvard Med Sch, Dept Cell Biol, 240 Longwood Ave, Boston, MA 02115 USA
[2] Max Planck Inst Biochem, Dept Mol Machines & Signaling, D-82152 Martinsried, Germany
[3] MRC, Lab Mol Biol, Francis Crick Ave, Cambridge CB2 0QH, England
[4] Walter & Eliza Hall Inst Med Res, Ubiquitin Signalling Div, Parkville, Vic 3052, Australia
[5] Univ Melbourne, Dept Med Biol, Melbourne, Vic 3010, Australia
[6] Merck, West Point, PA 19486 USA
基金
欧洲研究理事会; 英国医学研究理事会;
关键词
MITOCHONDRIAL QUALITY-CONTROL; PROTEIN-PHOSPHORYLATION; DAMAGED MITOCHONDRIA; UBIQUITIN CHAINS; PINK1; ACTIVATION; DEGRADATION; PROTEASOME; MECHANISM; AUTOPHAGY;
D O I
10.1016/j.molcel.2019.11.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ubiquitin ligase Parkin, protein kinase PINK1, USP30 deubiquitylase, and p97 segregase function together to regulate turnover of damaged mitochondria via mitophagy, but our mechanistic understanding in neurons is limited. Here, we combine induced neurons (iNeurons) derived from embryonic stem cells with quantitative proteomics to reveal the dynamics and specificity of Parkin-dependent ubiquitylation under endogenous expression conditions. Targets showing elevated ubiquitylation in USP30(-/-) iNeurons are concentrated in components of the mitochondrial translocon, and the ubiquitylation kinetics of the vast majority of Parkin targets are unaffected, correlating with a modest kinetic acceleration in accumulation of pS65-Ub and mitophagic flux upon mitochondrial depolarization without USP30. Basally, ubiquitylated translocon import substrates accumulate, suggesting a quality control function for USP30. p97 was dispensable for Parkin ligase activity in iNeurons. This work provides an unprecedented quantitative landscape of the Parkin-modified ubiquitylome in iNeurons and reveals the underlying specificity of central regulatory elements in the pathway.
引用
收藏
页码:1124 / +
页数:29
相关论文
共 79 条
  • [1] Loss of iron triggers PINK1/Parkin-independent mitophagy
    Allen, George F. G.
    Toth, Rachel
    James, John
    Ganley, Ian G.
    [J]. EMBO REPORTS, 2013, 14 (12) : 1127 - 1135
  • [2] Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy
    An, Heeseon
    Harper, J. Wade
    [J]. NATURE CELL BIOLOGY, 2018, 20 (02) : 135 - +
  • [3] Targeting the AAA ATPase p97 as an Approach to Treat Cancer through Disruption of Protein Homeostasis
    Anderson, Daniel J.
    Le Moigne, Ronan
    Djakovic, Stevan
    Kumar, Brajesh
    Rice, Julie
    Wong, Steve
    Wang, Jinhai
    Yao, Bing
    Valle, Eduardo
    von Soly, Szerenke Kiss
    Madriaga, Antonett
    Soriano, Ferdie
    Menon, Mary-Kamala
    Wu, Zhi Yong
    Kampmann, Martin
    Chen, Yuwen
    Weissman, Jonathan S.
    Aftab, Blake T.
    Yakes, F. Michael
    Shawver, Laura
    Zhou, Han-Jie
    Wustrow, David
    Rolfe, Mark
    [J]. CANCER CELL, 2015, 28 (05) : 653 - 665
  • [4] Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin
    Ashrafi, Ghazaleh
    Schlehe, Julia S.
    LaVoie, Matthew J.
    Schwarz, Thomas L.
    [J]. JOURNAL OF CELL BIOLOGY, 2014, 206 (05) : 655 - 670
  • [5] A probability-based approach for high-throughput protein phosphorylation analysis and site localization
    Beausoleil, Sean A.
    Villen, Judit
    Gerber, Scott A.
    Rush, John
    Gygi, Steven P.
    [J]. NATURE BIOTECHNOLOGY, 2006, 24 (10) : 1285 - 1292
  • [6] The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
    Bingol, Baris
    Tea, Joy S.
    Phu, Lilian
    Reichelt, Mike
    Bakalarski, Corey E.
    Song, Qinghua
    Foreman, Oded
    Kirkpatrick, Donald S.
    Sheng, Morgan
    [J]. NATURE, 2014, 510 (7505) : 370 - +
  • [7] Mitochondrial fission facilitates the selective mitophagy of protein aggregates
    Burman, Jonathon L.
    Pickles, Sarah
    Wang, Chunxin
    Sekine, Shiori
    Vargas, Jose Norberto S.
    Zhang, Zhe
    Youle, Alice M.
    Nezich, Catherine L.
    Wu, Xufeng
    Hammer, John A.
    Youle, Richard J.
    [J]. JOURNAL OF CELL BIOLOGY, 2017, 216 (10) : 3231 - 3247
  • [8] Spatial Parkin Translocation and Degradation of Damaged Mitochondria via Mitophagy in Live Cortical Neurons
    Cai, Qian
    Zakaria, Hesham Mostafa
    Simone, Anthony
    Sheng, Zu-Hang
    [J]. CURRENT BIOLOGY, 2012, 22 (06) : 545 - 552
  • [9] MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins
    Calvo, Sarah E.
    Clauser, Karl R.
    Mootha, Vamsi K.
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) : D1251 - D1257
  • [10] Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
    Chan, Nickie C.
    Salazar, Anna M.
    Pham, Anh H.
    Sweredoski, Michael J.
    Kolawa, Natalie J.
    Graham, Robert L. J.
    Hess, Sonja
    Chan, David C.
    [J]. HUMAN MOLECULAR GENETICS, 2011, 20 (09) : 1726 - 1737