Sustainable NOx production from air in pulsed plasma: elucidating the chemistry behind the low energy consumption

被引:60
作者
Vervloessem, Elise [1 ,2 ]
Gorbanev, Yury [1 ]
Nikiforov, Anton [2 ]
De Geyter, Nathalie [2 ]
Bogaerts, Annemie [1 ]
机构
[1] Univ Antwerp, Univ Pl 1, B-2610 Antwerp, Belgium
[2] Univ Ghent, Sint Pietersnieuwstr 25, B-9000 Ghent, Belgium
基金
欧洲研究理事会;
关键词
BARRIER DISCHARGES; NITROGEN-FIXATION; GREEN AMMONIA; GENERATION; SPARK; COST;
D O I
10.1039/d1gc02762j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
N-Based fertilisers are paramount to support our still-growing world population. Current industrial N-2 fixation is heavily fossil fuel-dependent, therefore, a lot of work is put into the development of fossil-free pathways. Plasma technology offers a fossil-free and flexible method for N-2 fixation that is compatible with renewable energy sources. We present here a pulsed plasma jet for direct NOx production from air. The pulsed power allows for a record-low energy consumption (EC) of 0.42 MJ (mol N)(-1). This is the lowest reported EC in plasma-based N-2 fixation at atmospheric pressure thus far. We compare our experimental data with plasma chemistry modelling, and obtain very good agreement. Hence, we can use our model to explain the underlying mechanisms responsible for this low EC. The pulsed power and the corresponding pulsed gas temperature are the reason for the very low EC: they provide a strong vibrational-translational non-equilibrium and promote the non-thermal Zeldovich mechanism. This insight is important for the development of the next generation of plasma sources for energy-efficient NOx production.
引用
收藏
页码:916 / 929
页数:14
相关论文
共 67 条
[21]   Industrial applications of plasma, microwave and ultrasound techniques: Nitrogen-fixation and hydrogenation reactions [J].
Hessel, V. ;
Cravotto, G. ;
Fitzpatrick, P. ;
Patil, B. S. ;
Lang, Jueergen ;
Bonrath, Werner .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2013, 71 :19-30
[22]   Potential Economic Feasibility of Direct Electrochemical Nitrogen Reduction as a Route to Ammonia [J].
Hochman, Gal ;
Goldman, Alan S. ;
Felder, Frank A. ;
Mayer, James M. ;
Miller, Alexander J. M. ;
Holland, Patrick L. ;
Goldman, Leo A. ;
Manocha, Pritricia ;
Song, Ze ;
Aleti, Saketh .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (24) :8938-8948
[23]   Towards Green Ammonia Synthesis through Plasma-Driven Nitrogen Oxidation and Catalytic Reduction [J].
Hollevoet, Lander ;
Jardali, Fatme ;
Gorbanev, Yury ;
Creel, James ;
Bogaerts, Annemie ;
Martens, Johan A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (52) :23825-23829
[24]   Generation of Antimicrobial NOx by Atmospheric Air Transient Spark Discharge [J].
Janda, M. ;
Martisovits, V. ;
Hensel, K. ;
Machala, Z. .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2016, 36 (03) :767-781
[25]  
Jardali F, 2021, GREEN CHEM, V23, P1748, DOI [10.1039/D0GC03521A, 10.1039/d0gc03521a]
[26]  
Kamphus M., 2014, Nitrogen+Syngas, V328, P48
[27]   Nitrogen fixation in an electrode-free microwave plasma [J].
Kelly, Sean ;
Bogaerts, Annemie .
JOULE, 2021, 5 (11) :3006-3030
[28]   Formation of NOx from Air and N2/O2 Mixtures Using a Nonthermal Microwave Plasma System [J].
Kim, Taesoo ;
Song, Soonho ;
Kim, Joongsoo ;
Iwasaki, Ryuichi .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (12)
[29]  
Krop J., 1979, CHEMI PLAZMY, P242
[30]  
Krop J., 1981, CHEMIA, V678, P51