Thermal effects on transverse domain wall dynamics in magnetic nanowires

被引:15
作者
Leliaert, J. [1 ,2 ]
Van de Wiele, B. [1 ]
Vandermeulen, J. [1 ]
Coene, A. [1 ]
Vansteenkiste, A. [2 ]
Laurson, L. [3 ,4 ]
Durin, G. [5 ,6 ]
Van Waeyenberge, B. [2 ]
Dupre, L. [1 ]
机构
[1] Univ Ghent, Dept Elect Energy Syst & Automat, B-9000 Ghent, Belgium
[2] Univ Ghent, Dept Solid State Sci, B-9000 Ghent, Belgium
[3] Aalto Univ, Sch Sci, COMP Ctr Excellence, FI-00076 Aalto, Finland
[4] Aalto Univ, Sch Sci, Dept Appl Phys, Helsinki Inst Phys, FI-00076 Aalto, Finland
[5] Ist Nazl Ric Metrol, I-10135 Turin, Italy
[6] ISI Fdn, I-10126 Turin, Italy
基金
芬兰科学院;
关键词
MOTION; FLUCTUATIONS;
D O I
10.1063/1.4921421
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetic domain walls are proposed as data carriers in future spintronic devices, whose reliability depends on a complete understanding of the domain wall motion. Applications based on an accurate positioning of domain walls are inevitably influenced by thermal fluctuations. In this letter, we present a micromagnetic study of the thermal effects on this motion. As spin-polarized currents are the most used driving mechanism for domain walls, we have included this in our analysis. Our results show that at finite temperatures, the domain wall velocity has a drift and diffusion component, which are in excellent agreement with the theoretical values obtained from a generalized 1D model. The drift and diffusion component are independent of each other in perfect nanowires, and the mean square displacement scales linearly with time and temperature. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 25 条
[1]   Magnetic domain-wall logic [J].
Allwood, DA ;
Xiong, G ;
Faulkner, CC ;
Atkinson, D ;
Petit, D ;
Cowburn, RP .
SCIENCE, 2005, 309 (5741) :1688-1692
[2]   Current-induced domain wall motion in nanoscale ferromagnetic elements [J].
Boulle, O. ;
Malinowski, G. ;
Klaeui, M. .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2011, 72 (09) :III-187
[3]   THERMAL FLUCTUATIONS OF A SINGLE-DOMAIN PARTICLE [J].
BROWN, WF .
PHYSICAL REVIEW, 1963, 130 (05) :1677-+
[4]  
BROWN WF, 1963, MICROMAGNETICS, P37
[5]   Non-adiabatic spin-torques in narrow magnetic domain walls [J].
Burrowes, C. ;
Mihai, A. P. ;
Ravelosona, D. ;
Kim, J. -V. ;
Chappert, C. ;
Vila, L. ;
Marty, A. ;
Samson, Y. ;
Garcia-Sanchez, F. ;
Buda-Prejbeanu, L. D. ;
Tudosa, I. ;
Fullerton, E. E. ;
Attane, J. -P. .
NATURE PHYSICS, 2010, 6 (01) :17-21
[6]  
Einstein Albert., 1956, INVESTIGATION THEORY
[7]   Universal magnetic domain wall dynamics in the presence of weak disorder [J].
Ferre, Jacques ;
Metaxas, Peter J. ;
Mougin, Alexandra ;
Jamet, Jean-Pierre ;
Gorchon, Jon ;
Jeudy, Vincent .
COMPTES RENDUS PHYSIQUE, 2013, 14 (08) :651-666
[8]  
Landau L. D., 1935, Phys. Z. Sowjetunion, V8, P153
[9]   Current-driven domain wall mobility in polycrystalline Permalloy nanowires: A numerical study [J].
Leliaert, J. ;
Van de Wiele, B. ;
Vansteenkiste, A. ;
Laurson, L. ;
Durin, G. ;
Dupre, L. ;
Van Waeyenberge, B. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (23)
[10]   A numerical approach to incorporate intrinsic material defects in micromagnetic simulations [J].
Leliaert, J. ;
Van de Wiele, B. ;
Vansteenkiste, A. ;
Laurson, L. ;
Durin, G. ;
Dupre, L. ;
Van Waeyenberge, B. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)