Fano Manifolds with Weak almost Kahler-Ricci Solitons

被引:2
作者
Wang, Feng [1 ]
Zhu, Xiaohua [1 ,2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Peking Univ, BICMR, Beijing 100871, Peoples R China
关键词
UNIQUENESS; SPACES;
D O I
10.1093/imrn/rnu006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that a sequence of weak almost Kahler-Ricci solitons under further suitable conditions converges to a Kahler-Ricci soliton with complex codimension of singularities at least 2 in the Gromov-Hausdorff topology. As a corollary, we show that on a Fano manifold with the modified K-energy bounded below, there exists a sequence of weak almost Kahler-Ricci solitons which converges to a Kahler-Ricci soliton with complex codimension of singularities at least 2 in the Gromov-Hausdorff topology.
引用
收藏
页码:2437 / 2464
页数:28
相关论文
共 22 条
[1]  
[Anonymous], DIRICHLET FORMS
[2]  
[Anonymous], ARXIV13020282
[3]   Kahler-Ricci solitons on compact complex manifolds with C1(M)>0 [J].
Cao, HD ;
Tian, G ;
Zhu, XH .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (03) :697-719
[4]  
Cheeger J, 1997, J DIFFER GEOM, V46, P406
[5]   On the singularities of spaces with bounded Ricci curvature [J].
Cheeger, J ;
Colding, TH ;
Tian, G .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (05) :873-914
[6]  
CHEEGER J, 1982, J DIFFER GEOM, V17, P15
[7]  
Jiang W., 2013, ARXIVMATH14016542V1
[8]  
Li C., 2013, ARXIVMATHDG13026681V
[9]  
Li P., 2012, CAM ST AD M, V134
[10]  
Lieberman G.M., 1996, 2 ORDER PARABOLIC DI