Unsupervised Domain Expansion for Visual Categorization

被引:5
作者
Wang, Jie [1 ]
Tian, Kaibin [1 ]
Ding, Dayong [2 ]
Yang, Gang [3 ]
Li, Xirong [1 ]
机构
[1] Renmin Univ China, Key Lab DEKE, Beijing 100872, Peoples R China
[2] Visionary Intelligence Ltd Beijing, Vistel AI Lab, Beijing 100872, Peoples R China
[3] Renmin Univ China, Sch Informat, Beijing 100872, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Visual categorization; domain expansion; classifier generalization;
D O I
10.1145/3448108
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Expanding visual categorization into a novel domain without the need of extra annotation has been a long-term interest for multimedia intelligence. Previously, this challenge has been approached by unsupervised domain adaptation (UDA). Given labeled data from a source domain and unlabeled data from a target domain, UDA seeks for a deep representation that is both discriminative and domain-invariant. While UDA focuses on the target domain, we argue that the performance on both source and target domains matters, as in practice which domain a test example comes from is unknown. In this article, we extend UDA by proposing a new task called unsupervised domain expansion (UDE), which aims to adapt a deep model for the target domain with its unlabeled data, meanwhile maintaining the model's performance on the source domain. We propose Knowledge Distillation Domain Expansion (KDDE) as a general method for the UDE task. Its domain-adaptation module can be instantiated with any existing model. We develop a knowledge distillation-based learning mechanism, enabling KDDE to optimize a single objective where in the source and target domains are equally treated. Extensive experiments on two major benchmarks, i.e., Office-Home and DomainNet, show that KDDE compares favorably against four competitive baselines, i.e., DDC, DANN, DAAN, and CDAN, for both UDA and UDE tasks. Our study also reveals that the current UDA models improve their performance on the target domain at the cost of noticeable performance loss on the source domain.
引用
收藏
页数:24
相关论文
共 47 条
[1]  
Adriana R., 2015, P ICLR, P1
[2]  
Asami T, 2017, INT CONF ACOUST SPEE, P5185, DOI 10.1109/ICASSP.2017.7953145
[3]  
Ben-David Shai, 2007, ADV NEURAL INF PROCE
[4]  
Chen GB, 2017, ADV NEUR IN, V30
[5]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[6]  
Duan LX, 2009, PROC CVPR IEEE, P1375, DOI [10.1109/CVPR.2009.5206747, 10.1109/CVPRW.2009.5206747]
[7]  
Ganin Y, 2016, J MACH LEARN RES, V17
[8]  
Goldblum M, 2020, AAAI CONF ARTIF INTE, V34, P3996
[9]  
Hinton G., 2015, NIPS DEEP LEARN REPR
[10]  
Jiang W, 2008, IEEE IMAGE PROC, P161, DOI 10.1109/ICIP.2008.4711716