Bifurcation from zero or infinity in Sturm-Liouville problems which are not linearizable

被引:45
作者
Rynne, BP [1 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
D O I
10.1006/jmaa.1998.6122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear Sturm-Liouville problem Lu := -(pu')' + qu = lambda au + h(., u, u', lambda), in (0, pi), a(0)u(0) + b(0)u'(0) = 0, a(1)u(pi) + b(1)u'(pi) = 0, where a(i), b(i) are real numbers with \a(i)\ + \b(i)\ > 0, i = 0, 1, lambda is a real parameter, and the functions p and a are strictly positive on [0, pi]. Suppose that the nonlinearity h satisfies a condition of the form \h(x, xi, eta, lambda)\ less than or equal to M-0\xi\ + M-1\eta\, (x, xi, eta, lambda) is an element of [0, pi] x R-3 as either \(xi, eta)\ --> 0 or \(xi, eta)\ --> infinity, for some constants M-0, M-1. Then we show that there exist global continua of nontrivial solutions (lambda, u) bifurcating from u = 0 or "u = infinity," respectively. These global continua have properties similar to those of the continua found in Rabonowitz' well-known global bifurcation theorem. (C) 1998 Academic Press.
引用
收藏
页码:141 / 156
页数:16
相关论文
共 18 条
[1]  
[Anonymous], GEN TOPOLOGY
[2]  
BAILEY PB, 1967, J MATH ANAL APPL, V24, P94
[3]   SOME NONLINEAR STURM-LIOUVILLE PROBLEMS [J].
BERESTYCKI, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 26 (03) :375-390
[4]  
BIALEY P, J MATH ANAL APPL, V1423, P66
[5]  
Birkhoff G., 1969, Ordinary differential equations, V2
[6]  
CHIAPPINELLI R, 1985, B UNIONE MAT ITAL, V4A, P77
[7]  
Crandall M.G., 1971, J FUNCT ANAL, V8, P321
[8]   STRUCTURE OF SOLUTIONS OF NONLINEAR EIGENVALUE PROBLEMS [J].
DANCER, EN .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 23 (11) :1069-1076
[9]   NOTE ON BIFURCATION FROM INFINITY [J].
DANCER, EN .
QUARTERLY JOURNAL OF MATHEMATICS, 1974, 25 (97) :81-84
[10]  
MAKHMUDOV AP, 1989, DIFF EQUAT+, V25, P71