Time dependent solutions for fractional coupled Schrodinger equations

被引:5
作者
Lenzi, E. K. [1 ,2 ]
de Castro, A. S. M. [1 ]
Mendes, R. S. [2 ,3 ]
机构
[1] Univ Estadual Ponta Grossa, Dept Fis, Av Gen Carlos Cavalcanti 4748, BR-84030900 Ponta Grossa, PR, Brazil
[2] Ctr Brasileiro Pesquisas Fis, Natl Inst Sci & Technol Complex Syst, BR-22290180 Rio De Janeiro, RJ, Brazil
[3] Univ Estadual Maringa, Dept Fis, Ave Colombo 5790, BR-87020900 Maringa, Parana, Brazil
关键词
Fractional Schrodinger equation; Levy distribution; Green function;
D O I
10.1016/j.amc.2018.10.074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze dynamical properties of two fractional Schrodinger equations coupled by some classes of real time independent potentials. For this set of equations, we investigate the required conditions on the equations making it possible to retain the probabilistic interpretation of their correspondent solutions when two component wave functions are considered. We observe the presence of interference between the components during the transition processes which can be either reversible or irreversible depending on the condition imposed on the potentials. The solutions for these equations are obtained in both cases of localized and non-localized coupling potentials. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:622 / 632
页数:11
相关论文
共 30 条
[1]  
Achar N. N., 2013, ADV MATH PHYS, V2013
[2]  
Bayn S. S., 2013, J MATH PHYS, V54
[3]  
Bayn S. S., 2012, J MATH PHYS, V53
[4]   Tunneling in fractional quantum mechanics [J].
Capelas de Oliveira, E. ;
Vaz, Jayme, Jr. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (18)
[5]   Exact solution of Schrodinger equation for two state problem with time dependent coupling [J].
Diwaker ;
Panda, Bandhan ;
Chakraborty, Aniruddha .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 442 :380-387
[6]   Green's function for the time-dependent scattering problem in the fractional quantum mechanics [J].
Dong, Jianping .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)
[7]   Time fractional development of quantum systems [J].
Ertik, Huseyin ;
Demirhan, Dogan ;
Sirin, Huseyin ;
Buyukkilic, Fevzi .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
[8]  
Evangelista L.R., 2018, Fractional Diffusion Equations and Anomalous Diffusion
[9]  
Feynman R. P., 1965, Quantum Mechanics and Path Integrals
[10]   SEMICLASSICAL APPROXIMATIONS FOR SCATTERINGS BY NONLOCAL POTENTIALS .1. EFFECTIVE-MASS METHOD [J].
GERBER, RB .
JOURNAL OF CHEMICAL PHYSICS, 1973, 58 (11) :4936-4948