Observation of Oscillatory Resistance Behavior in Coupled Bernal and Rhombohedral Stacking Graphene

被引:16
作者
Liu, Yanping [1 ]
Lew, Wen Siang [1 ]
Goolaup, Sarjoosing [1 ]
Liew, Hwi Fen [1 ]
Wong, Seng Kai [2 ]
Zhou, Tiejun [2 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, 21 Nanyang Link, Singapore 637371, Singapore
[2] ASTAR, Data Storage Inst, Singapore 117608, Singapore
关键词
graphene; oscillatory resistance; Coulomb interaction; short-range scattering; Bernal and rhombohedral stacking; excitonic gap; thermally activated; FEW-LAYER GRAPHENE; WEAK-LOCALIZATION; MAGNETIC-FIELD; ELECTRIC-FIELD;
D O I
10.1021/nn200771e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on the first observation of an anomalous temperature-dependent resistance behavior in coupled Bernal and rhombohedral stacking graphene. At low-temperature regime (<50 K) the temperature-dependent resistance exhibits a drop while at high-temperature regions (>250 K), the resistance increases. In the transition region (50-250 K) an oscillatory resistance behavior was observed. This property is not present In any layered graphene structures other than five-layer. We propose that the temperature-dependent resistance behavior is governed by the interplay of the Coulomb and short-range scatterings. The origin of the oscillatory resistance behavior is the ABCAB and ABABA stacking configurations, which Induces tunable bandgap in the five-layer graphene. The obtained results also indicate that a perpendicular magnetic field opens an excitonic gap because of the Coulomb interaction-driven electronic instabilities, and the bandgap of the five-layer graphene is thermally activated. Potentially, the observed phenomenon provides important transport information to the design of few-layer graphene transistors that can be manipulated by a magnetic field.
引用
收藏
页码:5490 / 5498
页数:9
相关论文
共 56 条
[1]   Properties of graphene: a theoretical perspective [J].
Abergel, D. S. L. ;
Apalkov, V. ;
Berashevich, J. ;
Ziegler, K. ;
Chakraborty, Tapash .
ADVANCES IN PHYSICS, 2010, 59 (04) :261-482
[2]   Dependence of band structures on stacking and field in layered graphene [J].
Aoki, Masato ;
Amawashi, Hiroshi .
SOLID STATE COMMUNICATIONS, 2007, 142 (03) :123-127
[3]   Stacking order dependent electric field tuning of the band gap in graphene multilayers [J].
Avetisyan, A. A. ;
Partoens, B. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2010, 81 (11)
[4]   Electric field tuning of the band gap in graphene multilayers [J].
Avetisyan, A. A. ;
Partoens, B. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2009, 79 (03)
[5]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[6]   Ultraviolet Raman microscopy of single and multilayer graphene [J].
Calizo, Irene ;
Bejenari, Igor ;
Rahman, Muhammad ;
Liu, Guanxiong ;
Balandin, Alexander A. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (04)
[7]   Friedel oscillations, impurity scattering, and temperature dependence of resistivity in graphene [J].
Cheianov, Vadim V. ;
Fal'ko, Vladimir I. .
PHYSICAL REVIEW LETTERS, 2006, 97 (22)
[8]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[9]   Charge transport and inhomogeneity near the minimum conductivity point in graphene [J].
Cho, Sungjae ;
Fuhrer, Michael S. .
PHYSICAL REVIEW B, 2008, 77 (08)
[10]  
Craciun MF, 2009, NAT NANOTECHNOL, V4, P383, DOI [10.1038/NNANO.2009.89, 10.1038/nnano.2009.89]