Hyers-Ulam stability of the Cauchy functional equation on square-symmetric groupoids

被引:0
作者
Páles, Z [1 ]
机构
[1] Univ Debrecen, Inst Math & Informat, H-4010 Debrecen, Hungary
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2001年 / 58卷 / 04期
关键词
Hyers-Ulam stability; Cauchy functional equation; square-symmetric groupoid;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stability of the functional equation f(x o y)=f(x) * f(y) (x, y epsilon X) is investigated, where f : X --> Y and o, * are square-symmetric operations on the sets X and Y, respectively. The results presented include and generalize the classical theorem of Hyers obtained on the stability of the Cauchy functional equation in 1941.
引用
收藏
页码:651 / 666
页数:16
相关论文
共 15 条
[1]  
[Anonymous], 1993, INT J MATH MATH SCI
[2]  
Forti G. L., 1995, AEQUATIONES MATH, V50, P143, DOI DOI 10.1007/BF01831117
[3]  
GER R, 1994, P 4 INT C FUNCT EQ I, P5
[4]  
Hyers D. H., 1998, PROGR NONLINEAR DIFF, V34
[5]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[6]  
KIM GH, IN PRESS MATH INEQ A
[7]  
KOMINEK Z., 1989, Demonstr. Math., V22, P499
[8]   Hyers-Ulam stability of functional equations with a square-symmetric operation [J].
Pales, Z ;
Volkmann, P ;
Luce, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (22) :12772-12775
[9]  
Pales Z., 1998, Aequationes Math, V56, P222, DOI [10.1007/s000100050058, DOI 10.1007/S000100050058]
[10]  
Polya George, 1925, Problems and Theorems in Analysis, VI