Stable phase retrieval with low-redundancy frames

被引:64
作者
Bodmann, Bernhard G. [1 ]
Hammen, Nathaniel [1 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
基金
美国国家科学基金会;
关键词
Magnitude measurements; Trigonometric polynomials; Roots of complex polynomials; Newton's identitites; PROJECTIVE SPACES; RECOVERY;
D O I
10.1007/s10444-014-9359-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the recovery of vectors from magnitudes of frame coefficients when the frames have a low redundancy, meaning a small number of frame vectors compared to the dimension of the Hilbert space. We first show that for complex vectors in d dimensions, 4d-4 suitably chosen frame vectors are sufficient to uniquely determine each signal, up to an overall unimodular constant, from the magnitudes of its frame coefficients. Then we discuss the effect of noise and show that 8d-4 frame vectors provide a stable recovery if part of the frame coefficients is bounded away from zero. In this regime, perturbing the magnitudes of the frame coefficients by noise that is sufficiently small results in a recovery error that is at most proportional to the noise level.
引用
收藏
页码:317 / 331
页数:15
相关论文
共 19 条
  • [1] Balan R., ARXIV12071134
  • [2] On signal reconstruction without phase
    Balan, Radu
    Casazza, Pete
    Edidin, Dan
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (03) : 345 - 356
  • [3] Painless Reconstruction from Magnitudes of Frame Coefficients
    Balan, Radu
    Bodmann, Bernhard G.
    Casazza, Peter G.
    Edidin, Dan
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2009, 15 (04) : 488 - 501
  • [4] Bandeira A.S., 2014, APPL COMPUT IN PRESS
  • [5] Bodmann B.G., 2007, P SOC PHOTO-OPT INS, V6701
  • [6] Diffractive imaging for periodic samples: retrieving one-dimensional concentration profiles across microfluidic channels
    Bunk, Oliver
    Diaz, Ana
    Pfeiffer, Franz
    David, Christian
    Schmitt, Bernd
    Satapathy, Dillip K.
    van der Veen, J. Friso
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 2007, 63 : 306 - 314
  • [7] Candes E.J., 2014, FDN COMPUT IN PRESS
  • [8] Phase Retrieval via Matrix Completion
    Candes, Emmanuel J.
    Eldar, Yonina C.
    Strohmer, Thomas
    Voroninski, Vladislav
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (01): : 199 - 225
  • [9] PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming
    Candes, Emmanuel J.
    Strohmer, Thomas
    Voroninski, Vladislav
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (08) : 1241 - 1274
  • [10] Demanet L., 2014, J FOURIER A IN PRESS