Mirror node correlations tuning synchronization in multiplex networks

被引:9
作者
Kumar, Anil [1 ]
Baptista, Murilo S. [2 ]
Zaikin, Alexey [3 ,4 ]
Jalan, Sarika [1 ,5 ]
机构
[1] Indian Inst Technol Indore, Complex Syst Lab, Discipline Phys, Khandwa Rd, Indore 453552, Madhya Pradesh, India
[2] Univ Aberdeen, SUPA, Inst Complex Syst & Math Biol, Aberdeen AB24 3UE, Scotland
[3] UCL, Inst Womens Hlth, Dept Math, London WC1H 0AY, England
[4] Lobachevsky State Univ Nizhni Novgorod, Dept Appl Math, Nizhnii Novgorod 603950, Russia
[5] Indian Inst Technol Indore, Ctr Biosci & Biomed Engn, Khandwa Rd, Indore 453552, Madhya Pradesh, India
基金
俄罗斯科学基金会;
关键词
COMPLEX NETWORKS;
D O I
10.1103/PhysRevE.96.062301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that the degree-degree correlations have a major impact on global synchronizability (GS) of multiplex networks, enabling the specification of synchronizability by only changing the degree-degree correlations of the mirror nodes while maintaining the connection architecture of the individual layer unaltered. If individual layers have nodes that are mildly correlated, the multiplex network is best synchronizable when the mirror degrees are strongly negatively correlated. If individual layers have nodes with strong degree-degree correlations, mild correlations among the degrees of mirror nodes are the best strategy for the optimization of GS. Global synchronization also depend on the density of connections, a phenomenon not observed in a single layer network. The results are crucial to understand, predict, and specify behavior of systems having multiple types of connections among the interacting units.
引用
收藏
页数:6
相关论文
共 29 条
[1]   Synchronization of Interconnected Networks: The Role of Connector Nodes [J].
Aguirre, J. ;
Sevilla-Escoboza, R. ;
Gutierrez, R. ;
Papo, D. ;
Buldu, J. M. .
PHYSICAL REVIEW LETTERS, 2014, 112 (24)
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]  
[Anonymous], 2010, NETWORKS INTRO, DOI DOI 10.1093/ACPROF:OSO/9780199206650.001.0001
[4]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[5]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4
[6]   The structure and dynamics of multilayer networks [J].
Boccaletti, S. ;
Bianconi, G. ;
Criado, R. ;
del Genio, C. I. ;
Gomez-Gardenes, J. ;
Romance, M. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zanin, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01) :1-122
[7]   Disease Localization in Multilayer Networks [J].
de Arruda, Guilherme Ferraz ;
Cozzo, Emanuele ;
Peixoto, Tiago P. ;
Rodrigues, Francisco A. ;
Moreno, Yamir .
PHYSICAL REVIEW X, 2017, 7 (01)
[8]   On degree-degree correlations in multilayer networks [J].
de Arruda, Guilherme Ferraz ;
Cozzo, Emanuele ;
Moreno, Yamir ;
Rodrigues, Francisco A. .
PHYSICA D-NONLINEAR PHENOMENA, 2016, 323 :5-11
[9]   Mathematical Formulation of Multilayer Networks [J].
De Domenico, Manlio ;
Sole-Ribalta, Albert ;
Cozzo, Emanuele ;
Kivelae, Mikko ;
Moreno, Yamir ;
Porter, Mason A. ;
Gomez, Sergio ;
Arenas, Alex .
PHYSICAL REVIEW X, 2013, 3 (04)
[10]   Effects of degree correlation on the synchronization of networks of oscillators [J].
Di Bernardo, M. ;
Garofalo, F. ;
Sorrentino, F. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (10) :3499-3506