Effect of Ce substitution on hydrogen absorption/desorption of Laves phase-related BCC solid solution Ti33V37Mn30 alloy

被引:26
作者
Chen, X. Y. [1 ]
Chen, R. R. [1 ,2 ]
Yu, K. [1 ]
Ding, X. [1 ]
Li, X. Z. [1 ]
Ding, H. S. [1 ]
Su, Y. Q. [1 ,2 ]
Guo, J. J. [1 ]
机构
[1] Harbin Inst Technol, Natl Key Lab Precis Hot Proc Met, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Ce; Laves phase; Activation performance; Hydrogen storage property; STORAGE PROPERTIES; ELECTROCHEMICAL CHARACTERISTICS;
D O I
10.1016/j.jallcom.2018.12.302
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to understand the effects of rare element substitution on activation performance of Laves phase-related BCC solid solution alloys, cerium (Ce) is used to partial substitute for Mn in Ti33V37Mn30 alloy. Results show that Ce substitution leads to the formation of Ce/CeO2 while decreases C14 Laves phase. Ce substituting alloys can absorb hydrogen without being activated at a high temperature, which means the activation performance of Ti33V37Mn30 alloys is improved greatly by the Ce/CeO2 rather than C14 Laves phase. The maximum hydrogen absorption capacity also increases when Ce content increases. The hydrogen absorption capacity and effective hydrogen storage capacity reach the maximum when the composition is Ti33V37Mn29.4Ce0.6, with the values of 3.35 wt% at 293 K and 2.25 wt% at 423 K. The dehydriding enthalpy (Delta H) of 0.6 at.%-Ce-substituting alloy is higher than that of Ce-free alloy, which indicates that Ce substitution can increase the stability of hydrides. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:617 / 624
页数:8
相关论文
共 21 条
[1]   Structure and hydrogen storage properties of mechanically alloyed Ti-V alloys [J].
Balcerzak, M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (37) :23698-23707
[2]   Crystal structure and hydrogen storage properties of Ti-V-Mn alloys [J].
Chen, X. Y. ;
Chen, R. R. ;
Ding, X. ;
Fang, H. Z. ;
Guo, J. J. ;
Ding, H. S. ;
Su, Y. Q. ;
Fu, H. Z. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (12) :6210-6218
[3]   Influence of oxygen introduced in TiFe-based hydride forming alloy on its morphology, structural and hydrogen sorption properties [J].
Davids, Moegamat Wafeeq ;
Lototskyy, Mykhaylo .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (23) :18155-18162
[4]   Effect of gradient-structure versus uniform nanostructure on hydrogen storage of Ti-V-Cr alloys: Investigation using ultrasonic SMAT and HPT processes [J].
Edalati, Kaveh ;
Novelli, Marc ;
Itano, Shota ;
Li, Hai-Wen ;
Akiba, Etsuo ;
Horita, Zenji ;
Grosdidier, Thierry .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 737 :337-346
[5]   Mechanochemical synthesis of hydrogen storage materials [J].
Huot, J. ;
Ravnsbaek, D. B. ;
Zhang, J. ;
Cuevas, F. ;
Latroche, M. ;
Jensen, T. R. .
PROGRESS IN MATERIALS SCIENCE, 2013, 58 (01) :30-75
[6]   Development of vanadium based hydrogen storage material: A review [J].
Kumar, Sanjay ;
Jain, Ankur ;
Ichikawa, T. ;
Kojima, Y. ;
Dey, G. K. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 72 :791-800
[7]   High performance FeTi-3.1 mass % V alloy for on board hydrogen storage solution [J].
Kumar, Sanjay ;
Tiwari, G. P. ;
Sonak, Sagar ;
Jain, Uttam ;
Krishnamurthy, Nagaiyar .
ENERGY, 2014, 75 :520-524
[8]   Effects of Ce on the hydrogen storage properties of TiFe0.9Mn0.1 alloy [J].
Leng, Haiyan ;
Yu, Zhigang ;
Yin, Jie ;
Li, Qian ;
Wu, Zhu ;
Chou, Kuo-Chih .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (37) :23731-23736
[9]   Microstructure and absorption/desorption kinetics evolutions of Mg Ni Ce alloys during hydrogenation and dehydrogenation cycles [J].
Li, Jinshan ;
Xie, Lishuai ;
Zhang, Tiebang ;
Song, Lin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (17) :8404-8414
[10]   Long-term hydrogen storage performance and structural evolution of LaNi4Al alloy [J].
Liu, Jingjing ;
Zheng, Zhi ;
Cheng, Honghui ;
Li, Kang ;
Yan, Kai ;
Han, Xingbo ;
Wang, Yu ;
Liu, Yi .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 731 :172-180