High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields

被引:27
作者
He, Yang [1 ]
Sun, Yajuan [2 ,3 ]
Zhang, Ruili [4 ,5 ,6 ]
Wang, Yulei [4 ,5 ,6 ]
Liu, Jian [4 ,5 ,6 ]
Qin, Hong [4 ,5 ,7 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, POB 2719, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[5] Univ Sci & Technol China, Collaborat Innovat Ctr Adv Fus Energy & Plasma Sc, Hefei 230026, Anhui, Peoples R China
[6] Chinese Acad Sci, Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China
[7] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
基金
美国国家科学基金会;
关键词
DIFFERENTIAL-EQUATIONS; INTEGRATION;
D O I
10.1063/1.4962677
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We construct high order symmetric volume-preserving methods for the relativistic dynamics of a charged particle by the splitting technique with processing. By expanding the phase space to include the time t, we give a more general construction of volume-preserving methods that can be applied to systems with time-dependent electromagnetic fields. The newly derived methods provide numerical solutions with good accuracy and conservative properties over long time of simulation. Furthermore, because of the use of an accuracy-enhancing processing technique, the explicit methods obtain high-order accuracy and are more efficient than the methods derived from standard compositions. The results are verified by the numerical experiments. Linear stability analysis of the methods shows that the high order processed method allows larger time step size in numerical integrations. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 31 条
[1]  
[Anonymous], 2003, GEOMETRIC NUMERICAL
[2]  
[Anonymous], 2016, Nuclear Fusion
[3]   Composition methods for differential equations with processing [J].
Blanes, S ;
Casas, F ;
Murua, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (06) :1817-1843
[4]   On the numerical integration of ordinary differential equations by processed methods [J].
Blanes, S ;
Casas, F ;
Murua, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :531-552
[5]   Splitting and composition methods for explicit time dependence in separable dynamical systems [J].
Blanes, Sergio ;
Diele, Fasma ;
Marangi, Carmela ;
Ragni, Stefania .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (03) :646-659
[6]   Symplectic and energy-conserving algorithms for solving magnetic field trajectories [J].
Chin, Siu A. .
PHYSICAL REVIEW E, 2008, 77 (06)
[7]   Variational formulation of particle algorithms for kinetic plasma simulations [J].
Evstatiev, E. G. ;
Shadwick, B. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 245 :376-398
[8]  
FENG K, 1995, NUMER MATH, V71, P451
[9]  
Feng K, 2010, SYMPLECTIC GEOMETRIC ALGORITHMS FOR HAMILTONIAN SYSTEMS, P1, DOI 10.1007/978-3-642-01777-3
[10]  
Feng K, 1985, PROCEEDING 1984 BEIJ, P42