p-Laplacian diffusion coupled to logistic reaction: asymptotic behavior as p goes to 1
被引:0
|
作者:
Sabina de Lis, Jose C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38203, Spain
Univ La Laguna, IUEA, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38203, SpainUniv La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38203, Spain
Sabina de Lis, Jose C.
[1
,2
]
Segura de Leon, Sergio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Valencia, Dept Anal Matemat, Dr Moliner 50, Valencia 46100, SpainUniv La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38203, Spain
Segura de Leon, Sergio
[3
]
机构:
[1] Univ La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38203, Spain
[2] Univ La Laguna, IUEA, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38203, Spain
This work discusses the limit as p goes to 1 of solutions to problem {-Delta(p)u = lambda vertical bar u vertical bar(p-2)u - vertical bar u vertical bar(q-2)u, x is an element of Omega, (P) u = 0 x is an element of partial derivative Omega, where Omega is a bounded smooth domain of R-N, lambda > 0 is a parameter and the exponents p, q satisfy 1 < p < q. Our interest is focused on the radially symmetric case. We prove in this radial setting that solutions u(p) to (P) converge to a limit u as p -> 1+. Moreover, the limit function u defines a solution to the natural 'limit problem' which involves the 1-Laplacian operator. In addition, a precise description of the structure of the set of all possible solutions to such a problem is achieved. This is accomplished by means of the introduction of a suitable energy condition. Furthermore, a detailed analysis of the profiles of all these solutions is also performed.
机构:
Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy