Production of Size-Controlled Gold Nanoclusters for Vapor-Liquid-Solid Method

被引:6
作者
Saj, Alam [1 ]
Alketbi, Shaikha [2 ]
Ansari, Sumayya M. [1 ]
Anjum, Dalaver H. [3 ]
Mohammad, Baker [4 ]
Aldosari, Haila M. [1 ]
机构
[1] United Arab Emirates Univ, Dept Phys, POB 15551, Al Ain, U Arab Emirates
[2] United Arab Emirates Univ, Dept Chem, POB 15551, Al Ain, U Arab Emirates
[3] Khalifa Univ, Dept Phys, POB 127788, Abu Dhabi, U Arab Emirates
[4] Khalifa Univ, Syst Chip SoC Ctr, Elect Engn & Comp Sci, POB 127788, Abu Dhabi, U Arab Emirates
关键词
nanoclusters; sputtering; gold catalyst; nanowires; GeTe; METAL NANOPARTICLES; MAGNETRON; POWER;
D O I
10.3390/nano12050763
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study demonstrated the deposition of size-controlled gold (Au) nanoclusters via direct-current magnetron sputtering and inert gas condensation techniques. The impact of different source parameters, namely, sputtering discharge power, inert gas flow rate, and aggregation length on Au nanoclusters' size and yield was investigated. Au nanoclusters' size and size uniformity were confirmed via transmission electron microscopy. In general, Au nanoclusters' average diameter increased by increasing all source parameters, producing monodispersed nanoclusters of an average size range of 1.7 +/- 0.1 nm to 9.1 +/- 0.1 nm. Among all source parameters, inert gas flow rate exhibited a strong impact on nanoclusters' average size, while sputtering discharge power showed great influence on Au nanoclusters' yield. Results suggest that Au nanoclusters nucleate via a three-body collision mechanism and grow through a two-body collision mechanism, wherein the nanocluster embryos grow in size due to atomic condensation. Ultimately, the usefulness of the produced Au nanoclusters as catalysts for a vapor-liquid-solid technique was put to test to synthesize the phase change material germanium telluride nanowires.
引用
收藏
页数:10
相关论文
共 21 条
[1]  
Acsente T., 2020, Progress in Fine Particle Plasmas, DOI [10.5772/intechopen.91733, DOI 10.5772/INTECHOPEN.91733]
[2]  
Alshammari A, 2016, SUPPORTED GOLD NANOP
[3]   Growth of Silver Nanoparticles by DCMagnetron Sputtering [J].
Asanithi, P. ;
Chaiyakun, S. ;
Limsuwan, P. .
JOURNAL OF NANOMATERIALS, 2012, 2012
[4]   Fabrication of size-selected Pd nanoclusters using a magnetron plasma sputtering source [J].
Ayesh, A. I. ;
Qamhieh, N. ;
Ghamlouche, H. ;
Thaker, S. ;
El-Shaer, M. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (03)
[5]  
Cassidy C., 2013, MRS ONLINE P LIBR, V1546, P644, DOI [10.1557/opl.2013.658, DOI 10.1557/OPL.2013.658]
[6]   Gold nanoparticle-based optical sensors for selected anionic contaminants [J].
Fang, Cheng ;
Dharmarajan, Rajarathnam ;
Megharaj, Mallavarapu ;
Naidu, Ravi .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2017, 86 :143-154
[7]   NOVEL GOLD CATALYSTS FOR THE OXIDATION OF CARBON-MONOXIDE AT A TEMPERATURE FAR BELOW 0-DEGREES-C [J].
HARUTA, M ;
KOBAYASHI, T ;
SANO, H ;
YAMADA, N .
CHEMISTRY LETTERS, 1987, (02) :405-408
[8]   Magnetron sputtering: a review of recent developments and applications [J].
Kelly, PJ ;
Arnell, RD .
VACUUM, 2000, 56 (03) :159-172
[9]   Influence of source parameters on the growth of metal nanoparticles by sputter-gas-aggregation [J].
Khojasteh, Malak ;
Kresin, Vitaly V. .
APPLIED NANOSCIENCE, 2017, 7 (08) :875-883
[10]   FORMATION OF LARGE METAL-CLUSTERS BY SURFACE NUCLEATION [J].
KNAUER, W .
JOURNAL OF APPLIED PHYSICS, 1987, 62 (03) :841-851