Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models

被引:158
作者
Schlogel, R. [1 ,2 ]
Marchesini, I. [3 ]
Alvioli, M. [3 ]
Reichenbach, P. [3 ]
Rossi, M. [3 ]
Malet, J. -P. [2 ]
机构
[1] EURAC Res, Inst Earth Observat, Viale Druso 1, I-39100 Bolzano, Italy
[2] Univ Strasbourg, Inst Phys Globe Strasbourg, UMR7516, EOST,CNRS, 5 Rue Rene Descartes, F-67084 Strasbourg, France
[3] CNR, Ist Ric Protez Idrogeol, Via Madonna Alta 126, I-06128 Perugia, Italy
基金
欧盟第七框架计划;
关键词
Landslide susceptibility; DEM spatial resolution; Statistical significance; Slope units; Ubaye valley; DEBRIS-FLOW; HAZARD; SHALLOW; MULTISCALE; INVENTORY; EXAMPLE; FRANCE; REGION; BASIN; RISK;
D O I
10.1016/j.geomorph.2017.10.018
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
We perform landslide susceptibility zonation with slope units using three digital elevation models (DEMs) of varying spatial resolution of the Ubaye Valley (South French Alps). In so doing, we applied a recently developed algorithm automating slope unit delineation, given a number of parameters, in order to optimize simultaneously the partitioning of the terrain and the performance of a logistic regression susceptibility model. The method allowed us to obtain optimal slope units for each available DEM spatial resolution. For each resolution, we studied the susceptibility model performance by analyzing in detail the relevance of the conditioning variables. The analysis is based on landslide morphology data, considering either the whole landslide or only the source area outline as inputs. The procedure allowed us to select the most useful information, in terms of DEM spatial resolution, thematic variables and landslide inventory, in order to obtain the most reliable slope unit-based landslide susceptibility assessment. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:10 / 20
页数:11
相关论文
共 46 条
[1]  
Aleotti P., 1999, Bull. Eng. Geol. Environ, V58, P21, DOI [10.1007/s100640050066, DOI 10.1007/S100640050066]
[2]   Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling [J].
Alvioli, Massimiliano ;
Marchesini, Ivan ;
Reichenbach, Paola ;
Rossi, Mauro ;
Ardizzone, Francesca ;
Fiorucci, Federica ;
Guzzetti, Fausto .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (11) :3975-3991
[3]  
[Anonymous], 2016, GEOGRAPHIC RESOURCES
[4]  
[Anonymous], 2021, PRETRAITEMENT DONNEE
[5]   The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan [J].
Ayalew, L ;
Yamagishi, H .
GEOMORPHOLOGY, 2005, 65 (1-2) :15-31
[6]  
BERNKNOPF RL, 1988, B ASS ENG GEOLOGISTS, V25, P39, DOI DOI 10.2113/GSEEGE0SCI.XXV.139
[7]   Spatial prediction models for landslide hazards: review, comparison and evaluation [J].
Brenning, A .
NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2005, 5 (06) :853-862
[8]   GIS TECHNIQUES AND STATISTICAL-MODELS IN EVALUATING LANDSLIDE HAZARD [J].
CARRARA, A ;
CARDINALI, M ;
DETTI, R ;
GUZZETTI, F ;
PASQUI, V ;
REICHENBACH, P .
EARTH SURFACE PROCESSES AND LANDFORMS, 1991, 16 (05) :427-445
[9]  
Carrara A., 1988, Quantitative analysis of mineral and energy resources, P581
[10]   Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues [J].
Catani, F. ;
Lagomarsino, D. ;
Segoni, S. ;
Tofani, V. .
NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2013, 13 (11) :2815-2831