Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization

被引:420
作者
Petanidou, Theodora [1 ]
Kallimanis, Athanasios S. [2 ]
Tzanopoulos, Joseph [3 ]
Sgardelis, Stefanos P. [3 ]
Pantis, John D. [3 ]
机构
[1] Univ Aegean, Dept Geog, Lab Biogeog & Ecol, Mitilini 81100, Greece
[2] Univ Ioannina, Dept Environm & Nat Resource Management, Agrinion 30100, Greece
[3] Aristotle Univ Thessaloniki, Dept Ecol, Thessaloniki 54124, Greece
关键词
apparent vs. real specialization; coevolution; ecological networks; food web structure; Mediterranean scrub; nestedness analysis; network analysis; sampling effort;
D O I
10.1111/j.1461-0248.2008.01170.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
We analysed the dynamics of a plant-pollinator interaction network of a scrub community surveyed over four consecutive years. Species composition within the annual networks showed high temporal variation. Temporal dynamics were also evident in the topology of the network, as interactions among plants and pollinators did not remain constant through time. This change involved both the number and the identity of interacting partners. Strikingly, few species and interactions were consistently present in all four annual plant-pollinator networks (53% of the plant species, 21% of the pollinator species and 4.9% of the interactions). The high turnover in species-to-species interactions was mainly the effect of species turnover (c. 70% in pairwise comparisons among years), and less the effect of species flexibility to interact with new partners (c. 30%). We conclude that specialization in plant-pollinator interactions might be highly overestimated when measured over short periods of time. This is because many plant or pollinator species appear as specialists in 1 year, but tend to be generalists or to interact with different partner species when observed in other years. The high temporal plasticity in species composition and interaction identity coupled with the low variation in network structure properties (e.g. degree centralization, connectance, nestedness, average distance and network diameter) imply (i) that tight and specialized coevolution might not be as important as previously suggested and (ii) that plant-pollinator interaction networks might be less prone to detrimental effects of disturbance than previously thought. We suggest that this may be due to the opportunistic nature of plant and animal species regarding the available partner resources they depend upon at any particular time.
引用
收藏
页码:564 / 575
页数:12
相关论文
共 64 条
[31]   Tolerance of pollination networks to species extinctions [J].
Memmott, J ;
Waser, NM ;
Price, MV .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2004, 271 (1557) :2605-2611
[32]   Integration of alien plants into a native flower-pollinator visitation web [J].
Memmott, J ;
Waser, NM .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2002, 269 (1508) :2395-2399
[33]   Global warming and the disruption of plant-pollinator interactions [J].
Memmott, Jane ;
Craze, Paul G. ;
Waser, Nickolas M. ;
Price, Mary V. .
ECOLOGY LETTERS, 2007, 10 (08) :710-717
[34]  
Michener C. D., 2000, BEES WORLD, DOI DOI 10.1002/MMNZ.20020780209
[35]   BIOGEOGRAPHY OF THE BEES [J].
MICHENER, CD .
ANNALS OF THE MISSOURI BOTANICAL GARDEN, 1979, 66 (03) :277-347
[36]   Ecological networks, nestedness and sampling effort [J].
Nielsen, Anders ;
Bascompte, Jordi .
JOURNAL OF ECOLOGY, 2007, 95 (05) :1134-1141
[37]   The smallest of all worlds: Pollination networks [J].
Olesen, Jens M. ;
Bascompte, Jordi ;
Dupont, Yoko L. ;
Jordano, Pedro .
JOURNAL OF THEORETICAL BIOLOGY, 2006, 240 (02) :270-276
[38]  
Olesen JM, 2002, ECOLOGY, V83, P2416, DOI 10.1890/0012-9658(2002)083[2416:GPIPPM]2.0.CO
[39]  
2
[40]  
OLESEN JM, 2008, IN PRESS ECOLOGY