Glutaminase 1 inhibition reduces thymidine synthesis in NSCLC

被引:19
作者
Lee, Jae-Seon [1 ]
Kang, Joon H. [1 ]
Lee, Seon-Hyeong [1 ]
Lee, Chang-Hun [1 ]
Son, Jaekyoung [2 ]
Kim, Soo-Youl [1 ]
机构
[1] Natl Canc Ctr, Div Canc Biol, Canc Cell & Mol Biol Branch, Goyang 410769, Gyeonggi Do, South Korea
[2] Univ Ulsan, Dept Biomed Sci, Coll Med, Seoul 138736, South Korea
关键词
Cancer metabolism; Non-small cell lung cancer; Glutaminase; 1; Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide; 5-fluorouracil; CELL LUNG-CANCER; PHASE-III TRIAL; PHOSPHATE SYNTHETASE; TARGETED THERAPIES; METABOLISM; GLUCOSE; CARBOPLATIN; CARCINOMA; ETOPOSIDE;
D O I
10.1016/j.bbrc.2016.06.095
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We found that non-small cell lung cancer (NSCLC) is remarkably sensitive to the regulation of glutamine supply by testing the metabolic dependency of 11 cancer cell lines against regulation of glycolysis, autophagy, fatty acid synthesis, and glutamine supply. Glutamine is known as a key supplement of cancer cell growth that is converted to a-ketoglutarate for anabolic biogenesis via glutamate by glutaminase 1 (GLS1). GLS1 inhibition using 10 mu M of bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) showed about 50% cell growth arrest by SRB assay. By testing the synergistic effects of conventional therapeutics, BPTES combined with 5-fluorouracil (5-FU), an irreversible inhibitor of thymidylate synthase, significant effects were observed on cell growth arrest in NSCLC. We found that GLS1 inhibition using BPTES reduced metabolic intermediates including thymidine and carbamoyl phosphate. Reduction of thymidine and carbamoyl-phosphate synthesis by BPTES treatment exacerbated pyrimidine supply by combination with 5-FU, which induced cell death synergistically in NSCLC. (C) 2016 The Authors. Published by Elsevier Inc.
引用
收藏
页码:374 / 382
页数:9
相关论文
共 26 条
[21]   Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment [J].
Sui, X. ;
Chen, R. ;
Wang, Z. ;
Huang, Z. ;
Kong, N. ;
Zhang, M. ;
Han, W. ;
Lou, F. ;
Yang, J. ;
Zhang, Q. ;
Wang, X. ;
He, C. ;
Pan, H. .
CELL DEATH & DISEASE, 2013, 4 :e838-e838
[22]   Glutamine, Glucose and other Fuels for Cancer [J].
Victoria Ruiz-Perez, Maria ;
Sanchez-Jimenez, Francisca ;
Alonso, Francisco J. ;
Segura, Juan A. ;
Marquez, Javier ;
Angel Medina, Miguel .
CURRENT PHARMACEUTICAL DESIGN, 2014, 20 (15) :2557-2579
[23]   Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis [J].
Xiang, Yan ;
Stine, Zachary E. ;
Xia, Jinsong ;
Lu, Yunqi ;
O'Connor, Roddy S. ;
Altman, Brian J. ;
Hsieh, Annie L. ;
Gouw, Arvin M. ;
Thomas, Ajit G. ;
Gao, Ping ;
Sun, Linchong ;
Song, Libing ;
Yan, Benedict ;
Slusher, Barbara S. ;
Zhuo, Jingli ;
Ooi, London L. ;
Lee, Caroline G. L. ;
Mancuso, Anthony ;
McCallion, Andrew S. ;
Le, Anne ;
Milone, Michael C. ;
Rayport, Stephen ;
Felsher, Dean W. ;
Dang, Chi V. .
JOURNAL OF CLINICAL INVESTIGATION, 2015, 125 (06) :2293-2306
[24]   The Metabolic Profile of Tumors Depends on Both the Responsible Genetic Lesion and Tissue Type [J].
Yuneva, Mariia O. ;
Fan, Teresa W. M. ;
Allen, Thaddeus D. ;
Higashi, Richard M. ;
Ferraris, Dana V. ;
Tsukamoto, Takashi ;
Mates, Jose M. ;
Alonso, Francisco J. ;
Wang, Chunmei ;
Seo, Youngho ;
Chen, Xin ;
Bishop, J. Michael .
CELL METABOLISM, 2012, 15 (02) :157-170
[25]   2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy [J].
Zhang, Dongsheng ;
Li, Juan ;
Wang, Fengzhen ;
Hu, Jun ;
Wang, Shuwei ;
Sun, Yueming .
CANCER LETTERS, 2014, 355 (02) :176-183
[26]   Targeting cellular metabolism to improve cancer therapeutics [J].
Zhao, Y. ;
Butler, E. B. ;
Tan, M. .
CELL DEATH & DISEASE, 2013, 4 :e532-e532