The kinetics and mechanism of an aqueous phase isoprene reaction with hydroxyl radical

被引:52
作者
Huang, D. [1 ]
Zhang, X. [1 ]
Chen, Z. M. [1 ]
Zhao, Y. [1 ]
Shen, X. L. [1 ]
机构
[1] Peking Univ, Coll Environm Sci & Engn, State Key Lab Environm Simulat & Pollut Control, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
SECONDARY ORGANIC AEROSOL; OH-INITIATED OXIDATION; IN-CLOUD PROCESSES; METHYL VINYL KETONE; RATE CONSTANTS; WATER-VAPOR; SIMULATED CONDITIONS; OXALIC-ACID; ATMOSPHERIC IMPLICATIONS; LABORATORY SIMULATION;
D O I
10.5194/acp-11-7399-2011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aqueous phase chemical processes of organic compounds in the atmosphere have received increasing attention, partly due to their potential contribution to the formation of secondary organic aerosol (SOA). Here, we analyzed the aqueous OH-initiated oxidation of isoprene and its reaction products including carbonyl compounds and organic acids, regarding the acidity and temperature as in-cloudy conditions. We also performed a laboratory simulation to improve our understanding of the kinetics and mechanisms for the products of aqueous isoprene oxidation that are significant precursors of SOA; these included methacrolein (MACR), methyl vinyl ketone (MVK), methyl glyoxal (MG), and glyoxal (GL). We used a novel chemical titration method to monitor the concentration of isoprene in the aqueous phase. We used a box model to interpret the mechanistic differences between aqueous and gas phase OH radical-initiated isoprene oxidations. Our results were the first demonstration of the rate constant for the reaction between isoprene and OH radical in water, 1.2 (+/-0.4) x 10(10) M-1 s(-1) at 283 K. Molar yields were determined based on consumed isoprene. Of note, the ratio of the yields of MVK (24.1 +/- 0.8 %) to MACR (10.9 +/- 1.1 %) in the aqueous phase isoprene oxidation was approximately double that observed for the corresponding gas phase reaction. We hypothesized that this might be explained by a water-induced enhancement in the self-reaction of a hydroxy isoprene peroxyl radical (HOCH2C(CH3)(O-2) CH = CH2) produced in the aqueous reaction. The observed yields for MG and GL were 11.4 +/- 0.3% and 3.8 +/- 0.1 %, respectively. Model simulations indicated that several potential pathways may contribute to the formation of MG and GL. Finally, oxalic acid increased steadily throughout the course of the study, even after isoprene was consumed completely. The observed yield of oxalic acid was 26.2 +/- 0.8% at 6 h. The observed carbon balance accounted for similar to 50% of the consumed isoprene. The presence of high-molecular-weight compounds may have accounted for a large portion of the missing carbons, but they were not quantified in this study. In summary, our work has provided experimental evidence that the availably abundant water could affect the distribution of oxygenated organic compounds produced in the oxidation of volatile organic compounds.
引用
收藏
页码:7399 / 7415
页数:17
相关论文
共 80 条
[1]   Existence of a hydroperoxy and water (HO2•H2O) radical complex [J].
Aloisio, S ;
Francisco, JS .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (11) :1899-1902
[2]   Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry [J].
Altieri, K. E. ;
Seitzinger, S. P. ;
Carlton, A. G. ;
Turpin, B. J. ;
Klein, G. C. ;
Marshall, A. G. .
ATMOSPHERIC ENVIRONMENT, 2008, 42 (07) :1476-1490
[3]   Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - gas phase reactions of organic species [J].
Atkinson, R. ;
Baulch, D. L. ;
Cox, R. A. ;
Crowley, J. N. ;
Hampson, R. F. ;
Hynes, R. G. ;
Jenkin, M. E. ;
Rossi, M. J. ;
Troe, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :3625-4055
[4]   Product distributions from the OH radical-induced oxidation of but-1-ene, methyl-substituted but-1-enes and isoprene in NOx-free air [J].
Benkelberg, HJ ;
Böge, O ;
Seuwen, R ;
Warneck, P .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (18) :4029-4039
[5]   Formation of secondary organic particle phase compounds from isoprene gas-phase oxidation products:: An aerosol chamber and field study [J].
Böge, O ;
Miao, Y ;
Plewka, A ;
Herrmann, H .
ATMOSPHERIC ENVIRONMENT, 2006, 40 (14) :2501-2509
[6]   HYDROPHOBIC EFFECTS ON SIMPLE ORGANIC-REACTIONS IN WATER [J].
BRESLOW, R .
ACCOUNTS OF CHEMICAL RESEARCH, 1991, 24 (06) :159-164
[7]   Isoprene and other non-methane hydrocarbons from seaweeds:: a source of reactive hydrocarbons to the atmosphere [J].
Broadgate, WJ ;
Malin, G ;
Küpper, FC ;
Thompson, A ;
Liss, PS .
MARINE CHEMISTRY, 2004, 88 (1-2) :61-73
[8]   Formation of nitric acid in the gas-phase HO2+NOreaction:: Effects of temperature and water vapor [J].
Butkovskaya, NI ;
Kukui, A ;
Pouvesle, N ;
Le Bras, G .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (29) :6509-6520
[9]   CRITICAL-REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION [J].
BUXTON, GV ;
GREENSTOCK, CL ;
HELMAN, WP ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1988, 17 (02) :513-886
[10]   Modeling the formation of secondary organic aerosol in coastal areas: Role of the sea-salt aerosol organic layer [J].
Cai, XY ;
Griffin, RJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D15)