Leibnizian relationalism for general relativistic physics

被引:10
作者
Vassallo, Antonio [1 ]
Esfeld, Michael [1 ]
机构
[1] Univ Lausanne, Sect Philosophie, CH-1015 Lausanne, Switzerland
来源
STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS | 2016年 / 55卷
基金
瑞士国家科学基金会;
关键词
Leibnizian relationalism; Humeanism; General relativity; Gravity; Shape dynamics; Duality; SPACETIME;
D O I
10.1016/j.shpsb.2016.08.006
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
An ontology of Leibnizian relationalism, consisting in distance relations among sparse matter points and their change only, is well recognized as a serious option in the context of classical mechanics. In this paper, we investigate how this ontology fares when it comes to general relativistic physics. Using a Humean strategy, we regard the gravitational field as a means to represent the overall change in the distance relations among point particles in a way that achieves the best combination of being simple and being informative. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:101 / 107
页数:7
相关论文
共 23 条
  • [11] Are all particles real?
    Goldstein, S
    Taylor, J
    Tumulka, R
    Zanghi, N
    [J]. STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2005, 36B (01): : 103 - 112
  • [12] Are all particles identical?
    Goldstein, S
    Taylor, J
    Tumulka, R
    Zanghì, N
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (07): : 1567 - 1576
  • [13] Gomes H, 2012, ARXIV11103837V2
  • [14] Frequently Asked Questions About Shape Dynamics
    Gomes, Henrique
    Koslowski, Tim
    [J]. FOUNDATIONS OF PHYSICS, 2013, 43 (12) : 1428 - 1458
  • [15] Einstein gravity as a 3D conformally invariant theory
    Gomes, Henrique
    Gryb, Sean
    Koslowski, Tim
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (04)
  • [16] Gryb S, 2016, BRIT J PHILOS SCI, DOI http://dx.doi.org/10.1093/bjps/axv009
  • [17] The regularity account of relational spacetime
    Huggett, N
    [J]. MIND, 2006, 115 (457) : 41 - 73
  • [18] CLASS OF CONTINUOUS TIMELIKE CURVES DETERMINES TOPOLOGY OF SPACETIME
    MALAMENT, DB
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (07) : 1399 - 1404
  • [19] QUANTUM ENTANGLEMENT, BOHMIAN MECHANICS, AND HUMEAN SUPERVENIENCE
    Miller, Elizabeth
    [J]. AUSTRALASIAN JOURNAL OF PHILOSOPHY, 2014, 92 (03) : 567 - 583
  • [20] Pooley O., 2013, The Oxford handbook of philosophy of physics, P522