Enhanced H2S gas-sensing performance of α-Fe2O3 nanofibers by optimizing process conditions and loading with reduced graphene oxide

被引:29
作者
Nguyen Van Hoang [1 ]
Chu Manh Hung [1 ]
Nguyen Duc Hoa [1 ]
Nguyen Van Duy [1 ]
Nguyen Van Toan [1 ]
Hoang Si Hong [2 ]
Phung Thi Hong Van [3 ]
Nguyen Tang Son [4 ]
Yoon, Soon-Gil [5 ]
Nguyen Van Hieu [6 ,7 ]
机构
[1] Hanoi Univ Sci & Technol, Int Training Inst Mat Sci, Hanoi, Vietnam
[2] Hanoi Univ Sci & Technol, Sch Elect Engn, Hanoi, Vietnam
[3] Hanoi Univ Nat Resources & Environm, Fac Basics Sci, Hanoi, Vietnam
[4] Phenikaa Univ, Fac Biotechnol, Chem & Environm Engn, Hanoi, Vietnam
[5] Chungnam Natl Univ, Dept Mat Sci & Engn, Daejeon 34134, South Korea
[6] Phenikaa Univ, Fac Elect & Elect Engn, Phenikaa Inst Adv Study, Hanoi, Vietnam
[7] A&A Green Phoenix Grp, Phenikaa Res & Technol Inst PRATI, 167 Hoang Ngan, Hanoi, Vietnam
关键词
RGO; alpha-Fe2O3; Nanofibers; Electrospinning; H2S; Gas sensors; FAST-RESPONSE; FACILE SYNTHESIS; SENSOR; HYBRID; FABRICATION; MORPHOLOGY; BEHAVIOR; SIZE;
D O I
10.1016/j.jallcom.2020.154169
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We systematically investigated the effects of process conditions and reduced graphene oxide (RGO) loading on the H2S gas-sensing performance of the alpha-Fe2O3 nanofibers (NFs) fabricated via on-chip electrospinning. The annealing temperature and precursor solution contents strongly influenced on the morphology and structure of the alpha-Fe2O3 NFs that accordingly affected on the gas-sensing performance. The optimum process conditions with the annealing temperature of 600 degrees C and the precursor solution contents of 11 wt% PVA and 4.0 wt% Fe(NO3)(3)center dot 9H(2)O led to the alpha-Fe2O3 NF sensors having a high response of similar to 6.1 at 1 ppm H2S gas. The RGO loading further improved the gas response, increasing the response to 1 ppm H2S gas up to similar to 9.2. Also, the RGO-loaded alpha-Fe2O3 NF sensors enhanced their selectivity and detection limit as compared with pure alpha-Fe2O3 NF sensors. The enhanced gas-sensing performance was attributed to the presence of nanograins, the increase of surface-to-volume ratio and the formation of potential barriers at nanograin homojunctions and RGO/alpha-Fe2O3 heterojunctions. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 49 条
[1]  
Abideen Z. U., 2015, Chem. Commun, V51, P15418
[2]   Graphene-loaded tin oxide nanofibers: optimization and sensing performance [J].
Abideen, Zain Ul ;
Park, Jae Young ;
Kim, Hyoun Woo ;
Kim, Sang Sub .
NANOTECHNOLOGY, 2017, 28 (03)
[3]   Excellent gas detection of ZnO nanofibers by loading with reduced graphene oxide nanosheets [J].
Abideen, Zain Ul ;
Katoch, Akash ;
Kim, Jae-Hun ;
Kwon, Yong Jung ;
Kim, Hyoun Woo ;
Kim, Sang Sub .
SENSORS AND ACTUATORS B-CHEMICAL, 2015, 221 :1499-1507
[4]   Hydrogen sensor based on graphene/ZnO nanocomposite [J].
Anand, Kanika ;
Singh, Onkar ;
Singh, Manmeet Pal ;
Kaur, Jasmeet ;
Singh, Ravi Chand .
SENSORS AND ACTUATORS B-CHEMICAL, 2014, 195 :409-415
[5]   Enhanced H2S sensing characteristics of Au modified Fe2O3 thin films [J].
Balouria, Vishal ;
Ramgir, Niranjan S. ;
Singh, A. ;
Debnath, A. K. ;
Mahajan, Aman ;
Bedi, R. K. ;
Aswal, D. K. ;
Gupta, S. K. .
SENSORS AND ACTUATORS B-CHEMICAL, 2015, 219 :125-132
[6]   ZnO-nanowire size effect induced ultra-high sensing response to ppb-level H2S [J].
Chen, Ying ;
Xu, Pengcheng ;
Xu, Tao ;
Zheng, Dan ;
Li, Xinxin .
SENSORS AND ACTUATORS B-CHEMICAL, 2017, 240 :264-272
[7]   Preparation of TiO2 hollow nanofibers by electrospining combined with sol-gel process [J].
Cheng, Yongliang ;
Huang, Wenzhi ;
Zhang, Yanfei ;
Zhu, Ling ;
Liu, Yangjia ;
Fan, Xizhi ;
Cao, Xueqiang .
CRYSTENGCOMM, 2010, 12 (07) :2256-2260
[8]   Growth behavior and sensing properties of nanograins in CuO nanofibers [J].
Choi, Sun-Woo ;
Park, Jae Young ;
Kim, Sang Sub .
CHEMICAL ENGINEERING JOURNAL, 2011, 172 (01) :550-556
[9]   Growth behavior of nanograins in NiO fibers [J].
Choi, Sun-Woo ;
Park, Jae Young ;
Kim, Sang Sub .
MATERIALS CHEMISTRY AND PHYSICS, 2011, 127 (1-2) :16-20
[10]  
Chronakis I.S., 2015, Micromanufacturing Engineering and Technology, VSecond Edi, P513, DOI DOI 10.1016/B978-0-323-31149-6.00022-0