OPERATOR-SPLITTING SCHEMES FOR DEGENERATE, NON-LOCAL, CONSERVATIVE-DISSIPATIVE SYSTEMS

被引:2
作者
Adams, D. A. N. I. E. L. [1 ,2 ]
Duong, Manh Hong [3 ]
DOS Reis, GONcALO [4 ]
机构
[1] Maxwell Inst Math Sci, Edinburgh, Scotland
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Scotland
[3] Univ Birmingham, Sch Math, Birmingham B15 2TT, England
[4] Univ Edinburgh, Sch Math, Mayfield Rd, Edinburgh EH9 3FD, Scotland
基金
英国工程与自然科学研究理事会;
关键词
  Wasserstein gradient flows; degenerate diffusions; variational principle; operator-splitting methods; non-lo cal partial differential equations; optimal transport; entropic regularisation; FOKKER-PLANCK EQUATION; GRADIENT FLOWS; VARIATIONAL FORMULATION; LARGE-DEVIATIONS; DIFFUSION; PRINCIPLE; APPROXIMATION; TRANSPORT; DYNAMICS; ENTROPY;
D O I
10.3934/dcds.2022109
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a natural operator-splitting variational scheme for a general class of non-lo cal, degenerate conservative-dissipative evo-lutionary equations. The splitting-scheme consists of two phases: a conserva -tive (transport) phase and a dissipative (diffusion) phase. The first phase is solved exactly using the method of characteristic and DiPerna-Lions the-ory while the second phase is solved approximately using a JKO-type varia-tional scheme that minimizes an energy functional with respect to a certain Kantorovich optimal transport cost functional. In addition, we also introduce an entropic-regularisation of the scheme. We prove the convergence of both schemes to a weak solution of the evolutionary equation. We illustrate the gen-erality of our work by providing a number of examples, including the kinetic Fokker-Planck equation and the (regularized) Vlasov-Poisson-Fokker-Planck equation.
引用
收藏
页码:5453 / 5486
页数:34
相关论文
共 54 条
[1]   From a Large-Deviations Principle to the Wasserstein Gradient Flow: A New Micro-Macro Passage [J].
Adams, Stefan ;
Dirr, Nicolas ;
Peletier, Mark A. ;
Zimmer, Johannes .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (03) :791-815
[2]  
Ambrosio L, 2008, LECT MATH, P1
[3]   THE WIGNER-FOKKER-PLANCK EQUATION: STATIONARY STATES AND LARGE TIME BEHAVIOR [J].
Arnold, Anton ;
Gamba, Irene M. ;
Gualdani, Maria Pia ;
Mischler, Stephane ;
Mouhot, Clement ;
Sparber, Christof .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (11)
[4]  
Benoist Y, 1992, J AM MATH SOC, V5, P33, DOI [DOI 10.2307/2152750, DOI 10.2307/2152750.MR1124979]
[5]  
Bernton E., 2018, C LEARNING THEORY, V75, P1777
[6]   Large deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats [J].
Bodineau, Thierry ;
Lefevere, Raphael .
JOURNAL OF STATISTICAL PHYSICS, 2008, 133 (01) :1-27
[7]   Weak solutions to a fractional Fokker-Planck equation via splitting and Wasserstein gradient flow [J].
Bowles, Malcolm ;
Agueh, Martial .
APPLIED MATHEMATICS LETTERS, 2015, 42 :30-35
[8]  
Buhler Theo, 2018, Functional Analysis, V191
[9]   Solution of a model Boltzmann equation via steepest descent in the 2-Wasserstein metric [J].
Carlen, EA ;
Gangbo, W .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 172 (01) :21-64
[10]   Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance [J].
Carlen, Eric A. ;
Maas, Jan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (05) :1810-1869