On well-posedness of semilinear parabolic and elliptic problems in the hyperbolic space

被引:13
作者
Punzo, Fabio [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
Semilinear parabolic equations; Semilinear elliptic equations; Laplace-Beltrami operator; Semigroup theory; Singular solutions; RADIAL SOLUTIONS; UNIQUENESS;
D O I
10.1016/j.jde.2011.05.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate existence and uniqueness of solutions to semilinear parabolic and elliptic equations in bounded domains of the n-dimensional hyperbolic space (n >= 3). L-p -> L-q estimates for the semigroup generated by the Laplace-Beltrami operator are obtained and then used to prove existence and uniqueness results for parabolic problems. Moreover, under proper assumptions on the nonlinear function, we establish uniqueness of positive classical solutions and nonuniqueness of singular solutions of the elliptic problem; furthermore, for the corresponding semilinear parabolic problem, nonuniqueness of weak solutions is stated. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1972 / 1989
页数:18
相关论文
共 18 条
[1]  
Bandle C., J DIFFERENT IN PRESS, DOI [10.1016/jjde.2011.06.001, DOI 10.1016/JJDE.2011.06.001]
[2]  
Baras P., 1983, Ann. Fac. Sci. Toul. Math, V5, P287, DOI DOI 10.5802/AFST.600
[3]  
BENEDETTI R., 1992, LECT HYPERBOLIC GEOM, DOI [10.1007/978-3-642-58158-8, DOI 10.1007/978-3-642-58158-8]
[4]  
Davies E.B., 1989, Heat kernel and spectral theory
[5]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[6]  
Grigor'yan A, 2006, CONTEMP MATH, V398, P93
[7]   Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds [J].
Grigor'yan, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 36 (02) :135-249
[8]   The heat kernel on hyperbolic space [J].
Grigor'yan, A ;
Noguchi, M .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1998, 30 :643-650
[9]  
Ji L., 2010, LP SPECTRAL THEORY H
[10]   Serrin's result for hyperbolic space and sphere [J].
Kumaresan, S ;
Prajapat, J .
DUKE MATHEMATICAL JOURNAL, 1998, 91 (01) :17-28