Electromagnetic afterglows associated with gamma-ray emission coincident with binary black hole merger event GW150914

被引:43
作者
Yamazaki, Ryo [1 ]
Asano, Katsuaki [2 ]
Ohira, Yutaka [1 ]
机构
[1] Aoyama Gakuin Univ, Dept Math & Phys, Sagamihara, Kanagawa 2525258, Japan
[2] Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778582, Japan
关键词
BURSTS; ENERGY; JETS;
D O I
10.1093/ptep/ptw042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Fermi Gamma-ray Burst Monitor reported the possible detection of the gamma-ray counterpart of a binary black hole merger event, GW150914. We show that the gamma-ray emission is caused by a relativistic outflow with Lorentz factor larger than 10. Subsequently, debris outflow pushes the ambient gas to form a shock, which is responsible for the afterglow synchrotron emission. We find that the 1.4 GHz radio flux peaks at similar to 10(5) s after the burst trigger. If the ambient matter is dense enough, with density larger than similar to 10(-2) cm(-3), then the peak radio flux is similar to 0.1 mJy, which is detectable with radio telescopes such as the Very Large Array. The optical afterglow peaks earlier than the radio, and if the ambient matter density is larger than similar to 0.1 cm(-3), the optical flux is detectable with large telescopes such as the Subaru Hyper Suprime-Cam. To reveal the currently unknown mechanisms of the outflow and its gamma-ray emission associated with the binary black hole merger event, follow-up electromagnetic observations of afterglows are important. Detection of the afterglow will localize the sky position of the gravitational wave and gamma- ray emissions, and it will support the physical association between them.
引用
收藏
页数:7
相关论文
共 49 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]  
[Anonymous], ARXIV160204156ASTROP
[3]  
[Anonymous], ARXIV160205529ASTROP
[4]  
[Anonymous], ARXIV160206961ASTROP
[5]  
[Anonymous], ARXIV160203840GRQC L
[6]  
[Anonymous], ARXIV160204488ASTROP
[7]  
[Anonymous], ARXIV160203868ASTROP
[8]  
[Anonymous], ARXIV160206938ASTROP
[9]  
[Anonymous], ARXIV160208492ASTROP
[10]  
[Anonymous], ARXIV160205411ASTROP