Enhanced catalytic activity and stability of Pt nanoparticles by surface coating of nanosized graphene oxide for hydrogen production from hydrolysis of ammonia-borane

被引:23
作者
Ye, Wanyue [1 ]
Ge, Yuzhen [1 ]
Gao, Zhanming [1 ]
Lu, Rongwen [1 ]
Zhang, Shufen [1 ]
机构
[1] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
FACILE SYNTHESIS; METHANOL OXIDATION; DEHYDROGENATION; GENERATION; TEMPERATURE; DURABILITY; NANOSHEETS; SHELL; WATER; CORE;
D O I
10.1039/c7se00384f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the electronic modification of silica supported Pt nanoparticles (SiO2@Pt) by coating a 1 nm thin layer of nanosized graphene oxide (NGO). The resulting SiO2@Pt@NGO showed much enhanced catalytic activity and stability for hydrogen production from hydrolysis of ammoniaborane compared with SiO2@Pt and graphene supported Pt nanoparticles, with an impressive initial TOF value reaching 324.6 mol(H2) mol(Pt)(-1) min(-1). Detailed characterization by means of HRTEM and EDS elemental mapping proved the structural correctness of SiO2@Pt@NGO. The XPS results showed that the binding energy of Pt-0 4f(7/2) in SiO2@Pt@NGO was 71.12 eV slightly higher than 70.84 eV of Pt-0 4f(7/2) in SiO2@Pt, indicating more electron-deficient Pt atoms after the interaction with NGO, which may be responsible for the enhanced catalytic performance.
引用
收藏
页码:2128 / 2133
页数:6
相关论文
共 28 条
[1]   Ceria supported rhodium nanoparticles: Superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane [J].
Akbayrak, Serdar ;
Tonbul, Yalcin ;
Ozkar, Saim .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 198 :162-170
[2]   Palladium(0) nanoparticles supported on silica-coated cobalt ferrite: A highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane [J].
Akbayrak, Serdar ;
Kaya, Murat ;
Volkan, Murvet ;
Ozkar, Saim .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 147 :387-393
[3]   The hydrogen economy in the 21st century: a sustainable development scenario [J].
Barreto, L ;
Makihira, A ;
Riahi, K .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2003, 28 (03) :267-284
[4]   Self-Assembled Free-Standing Graphite Oxide Membrane [J].
Chen, Chengmeng ;
Yang, Quan-Hong ;
Yang, Yonggang ;
Lv, Wei ;
Wen, Yuefang ;
Hou, Peng-Xiang ;
Wang, Maozhang ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2009, 21 (29) :3007-3011
[5]   Mechanistic Insight into Size-Dependent Activity and Durability in Pt/CNT Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane [J].
Chen, Wenyao ;
Ji, Jian ;
Feng, Xiang ;
Duan, Xuezhi ;
Qian, Gang ;
Li, Ping ;
Zhou, Xinggui ;
Chen, De ;
Yuan, Weikang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (48) :16736-16739
[6]   Monodispersed Pt nanoparticles on reduced graphene oxide by a non-noble metal sacrificial approach for hydrolytic dehydrogenation of ammonia borane [J].
Chen, Yao ;
Yang, Xinchun ;
Kitta, Mitsunori ;
Xu, Qiang .
NANO RESEARCH, 2017, 10 (11) :3811-3816
[7]   Platinum single-atom and cluster catalysis of the hydrogen evolution reaction [J].
Cheng, Niancai ;
Stambula, Samantha ;
Wang, Da ;
Banis, Mohammad Norouzi ;
Liu, Jian ;
Riese, Adam ;
Xiao, Biwei ;
Li, Ruying ;
Sham, Tsun-Kong ;
Liu, Li-Min ;
Botton, Gianluigi A. ;
Sun, Xueliang .
NATURE COMMUNICATIONS, 2016, 7
[8]   Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation [J].
Choi, Sung Mook ;
Seo, Min Ho ;
Kim, Hyung Ju ;
Kim, Won Bae .
CARBON, 2011, 49 (03) :904-909
[9]   Facile synthesis of monodisperse ruthenium nanoparticles supported on graphene for hydrogen generation from hydrolysis of ammonia borane [J].
Du, Cheng ;
Ao, Qiang ;
Cao, Nan ;
Yang, Lan ;
Luo, Wei ;
Cheng, Gongzhen .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (18) :6180-6187
[10]   CuxCo1-xO Nanoparticles on Graphene Oxide as A Synergistic Catalyst for High-Efficiency Hydrolysis of Ammonia-Borane [J].
Feng, Kun ;
Zhong, Jun ;
Zhao, Binhua ;
Zhang, Hui ;
Xu, Lai ;
Sun, Xuhui ;
Lee, Shuit-Tong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (39) :11950-11954