Planar and radial kinks in nonlinear Klein-Gordon models: Existence, stability, and dynamics

被引:8
作者
Kevrekidis, P. G. [1 ]
Danaila, I [2 ]
Caputo, J-G [2 ,3 ]
Carretero-Gonzalez, R. [4 ,5 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] Univ Rouen Normandie, Lab Math Raphael Salem, F-76801 St Etienne Du Rouvray, France
[3] INSA Rouen, Lab Math, Normandie, France
[4] San Diego State Univ, Computat Sci Res Ctr, Nonlinear Dynam Syst Grp, San Diego, CA 92182 USA
[5] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
基金
美国国家科学基金会;
关键词
RING DARK; SOLITONS; FLUXON; DECAY;
D O I
10.1103/PhysRevE.98.052217
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider effectively one-dimensional planar and radial kinks in two-dimensional nonlinear Klein-Gordon models and focus on the sine-Gordon model and the phi(4) variants thereof. We adapt an adiabatic invariant formulation recently developed for nonlinear Schrodinger equations, and we study the transverse stability of these kinks This enables us to characterize one-dimensional planar kinks as solitonic filaments, whose stationary states and corresponding spectral stability can be characterized not only in the homogeneous case, but also in the presence of external potentials. Beyond that, the full nonlinear (transverse) dynamics of such filaments are described using the reduced, one-dimensional, adiabatic invariant formulation. For radial kinks, this approach confirms their azimuthal stability. It also predicts the possibility of creating stationary and stable ringlike kinks In all cases, we corroborate the results of our methodology with full numerics on the original sine-Gordon and phi(4) models.
引用
收藏
页数:13
相关论文
共 44 条
[1]   Watching dark solitons decay into vortex rings in a Bose-Einstein condensate [J].
Anderson, BP ;
Haljan, PC ;
Regal, CA ;
Feder, DL ;
Collins, LA ;
Clark, CW ;
Cornell, EA .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :2926-2929
[2]  
[Anonymous], 2003, Optical Solitons
[3]  
[Anonymous], 1999, Vortices in nonlinear fields: from liquid crystals to superfluids, from non-equilibrium patterns to cosmic strings
[4]  
[Anonymous], 2014, SINE GORDON MODEL IT
[5]  
Belova T. I., 1997, Physics-Uspekhi, V40, P359, DOI 10.1070/PU1997v040n04ABEH000227
[6]  
BOGOLYUBSKII IL, 1976, JETP LETT+, V24, P12
[7]  
Bogolyubsky I. L., 1976, Pisma Zh. Eksp. Teor. Fiz, V24, P15
[8]   RESONANCE STRUCTURE IN KINK ANTIKINK INTERACTIONS IN PHI-4 THEORY [J].
CAMPBELL, DK ;
SCHONFELD, JF ;
WINGATE, CA .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 9 (1-2) :1-32
[9]   Radial sine-Gordon kinks as sources of fast breathers [J].
Caputo, J. -G. ;
Soerensen, M. P. .
PHYSICAL REVIEW E, 2013, 88 (02)
[10]   DRESSED FLUXON IN A JOSEPHSON WINDOW JUNCTION [J].
CAPUTO, JG ;
FLYTZANIS, N ;
DEVORET, M .
PHYSICAL REVIEW B, 1994, 50 (09) :6471-6474