Quantum theory, thermal gradients and the curved Euclidean space

被引:3
作者
Ganesh, S. [1 ]
机构
[1] Sri Sathya Sai Inst Higher Learning, Prasanthinilayam 515134, AP, India
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2022年 / 37卷 / 17期
关键词
Quantum theory; curved Euclidean space; Dirac equation; thermal gradient; equivalence; scalar field; PARTICLE CREATION; DIRAC-EQUATION; FIELD-DYNAMICS; TEMPERATURE; EQUILIBRIUM; ENERGY; PLASMA;
D O I
10.1142/S0217751X22501251
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The Euclidean space, obtained by the analytical continuation of time, to an imaginary time, is used to model thermal systems. In this work, it is taken a step further to systems with spatial thermal variation, by developing an equivalence between the spatial variation of temperature in a thermal bath and the curvature of the Euclidean space. The variation in temperature is recast as a variation in the metric, leading to a curved Euclidean space. The equivalence is substantiated by analyzing the Polyakov loop, the partition function and the periodicity of the correlation function. The bulk thermodynamic properties like the energy, entropy and the Helmholtz free energy are calculated from the partition function, for small metric perturbations, for a neutral scalar field. The Dirac equation for an external Dirac spinor, traversing a thermal bath with spatial thermal gradients, is solved in the curved Euclidean space. The fundamental behavior exhibited by the Dirac spinor eigenstate, may provide a possible mechanism to validate the theory, at a more basal level, than examining only bulk thermodynamic properties. Furthermore, in order to verify the equivalence at the level of classical mechanics, the geodesic equation is analyzed in a classical backdrop. The mathematical apparatus is borrowed from the physics of quantum theory in a gravity-induced space-time curvature. As spatial thermal variations are obtainable at quantum chromodynamic or quantum electrodynamic energies, it may be feasible for the proposed formulation to be validated experimentally.
引用
收藏
页数:39
相关论文
共 51 条
[1]   J/ψ Suppression at Forward Rapidity in Pb-Pb Collisions at √sNN=2.76 TeV [J].
Abelev, B. ;
Adam, J. ;
Adamova, D. ;
Adare, A. M. ;
Aggarwal, M. M. ;
Rinella, G. Aglieri ;
Agocs, A. G. ;
Agostinelli, A. ;
Aguilar Salazar, S. ;
Ahammed, Z. ;
Masoodi, A. Ahmad ;
Ahmad, N. ;
Ahn, S. U. ;
Akindinov, A. ;
Aleksandrov, D. ;
Alessandro, B. ;
Alfaro Molina, R. ;
Alici, A. ;
Alkin, A. ;
Almaraz Avina, E. ;
Alme, J. ;
Alt, T. ;
Altini, V. ;
Altinpinar, S. ;
Altsybeev, I. ;
Andrei, C. ;
Andronic, A. ;
Anguelov, V. ;
Anielski, J. ;
Anson, C. ;
Anticic, T. ;
Antinori, F. ;
Antonioli, P. ;
Aphecetche, L. ;
Appelshaeuser, H. ;
Arbor, N. ;
Arcelli, S. ;
Arend, A. ;
Armesto, N. ;
Arnaldi, R. ;
Aronsson, T. ;
Arsene, I. C. ;
Arslandok, M. ;
Asryan, A. ;
Augustinus, A. ;
Averbeck, R. ;
Awes, T. C. ;
Aystoe, J. ;
Azmi, M. D. ;
Bach, M. .
PHYSICAL REVIEW LETTERS, 2012, 109 (07)
[2]  
ABRIKOSOV AA, 1959, SOV PHYS JETP-USSR, V9, P636
[3]  
Adam J., 2019, PHYS REV LETT, V122
[4]   The order of the quantum chromodynamics transition predicted by the standard model of particle physics [J].
Aoki, Y. ;
Endrodi, G. ;
Fodor, Z. ;
Katz, S. D. ;
Szabo, K. K. .
NATURE, 2006, 443 (7112) :675-678
[5]   ANALYTIC STRUCTURE OF THE SELF-ENERGY FOR MASSIVE GAUGE BOSONS AT FINITE-TEMPERATURE [J].
ARNOLD, P ;
VOKOS, S ;
BEDAQUE, P ;
DAS, A .
PHYSICAL REVIEW D, 1993, 47 (10) :4698-4704
[6]   Hawking radiation as perceived by different observers [J].
Barbado, L. C. ;
Barcelo, C. ;
Garay, L. J. .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (12)
[7]   FEYNMAN RULES FOR GAUGE THEORIES AT FINITE TEMPERATURE [J].
BERNARD, CW .
PHYSICAL REVIEW D, 1974, 9 (12) :3312-3320
[8]   The quark-gluon plasma: collective dynamics and hard thermal loops [J].
Blaizot, JP ;
Iancu, E .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 359 (5-6) :355-528
[9]   The quest for the quark-gluon plasma [J].
Braun-Munzinger, Peter ;
Stachel, Johanna .
NATURE, 2007, 448 (7151) :302-309
[10]   Observation of Sequential υ Suppression in PbPb Collisions [J].
Chatrchyan, S. ;
Khachatryan, V. ;
Sirunyan, A. M. ;
Tumasyan, A. ;
Adam, W. ;
Aguilo, E. ;
Bergauer, T. ;
Dragicevic, M. ;
Eroe, J. ;
Fabjan, C. ;
Friedl, M. ;
Fruehwirth, R. ;
Ghete, V. M. ;
Hammer, J. ;
Hoermann, N. ;
Hrubec, J. ;
Jeitler, M. ;
Kiesenhofer, W. ;
Knuenz, V. ;
Krammer, M. ;
Kraetschmer, I. ;
Liko, D. ;
Mikulec, I. ;
Pernicka, M. ;
Rahbaran, B. ;
Rohringer, C. ;
Rohringer, H. ;
Schoefbeck, R. ;
Strauss, J. ;
Taurok, A. ;
Waltenberger, W. ;
Walzel, G. ;
Widl, E. ;
Wulz, C. -E. ;
Mossolov, V. ;
Shumeiko, N. ;
Gonzalez, J. Suarez ;
Bansal, S. ;
Cornelis, T. ;
De Wolf, E. A. ;
Janssen, X. ;
Luyckx, S. ;
Mucibello, L. ;
Ochesanu, S. ;
Roland, B. ;
Rougny, R. ;
Selvaggi, M. ;
Staykova, Z. ;
Van Haevermaet, H. ;
Van Mechelen, P. .
PHYSICAL REVIEW LETTERS, 2012, 109 (22)