Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: Direct oxidation and nonradical mechanisms

被引:333
作者
Yin, Renli [1 ]
Guo, Wanqian [1 ]
Wang, Huazhe [1 ]
Du, Juanshan [1 ]
Zhou, Xianjiao [1 ]
Wu, Qinglian [1 ]
Zheng, Heshan [1 ]
Chang, Joshu [2 ]
Ren, Nanqi [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin, Heilongjiang, Peoples R China
[2] Natl Cheng Kung Univ, Dept Chem Engn, Tainan, Taiwan
关键词
PMS; Direct oxidation; Sulfonamides; Nonradical oxidation; DFT; REDUCED GRAPHENE OXIDE; NATURAL ORGANIC-MATTER; CATALYTIC OZONATION; AQUATIC ENVIRONMENT; PERSULFATE ACTIVATION; RADICAL GENERATION; RESISTANCE GENES; DOPED GRAPHENE; WASTE-WATER; SULFATE;
D O I
10.1016/j.cej.2017.11.174
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, peroxymonosulfate (PMS) alone process was systematically demonstrated as nonradical processes for the first time and PMS direct oxidation was firstly verified by the combination of theoretical calculation and experimental detection as well, which were found to selectively degrade sulfonamide antibiotics (SAs) with high efficiency. Compared with the negligible decrease in other compounds, more than 95% of selected SAs were removed by PMS alone. In comparison with the little impacts of methanol or tert-butanol on SAs degradation, NaN3 can almost completely quench the oxidation processes, demonstrating the nonradical oxidation processes (O-1(2) and PMS direct oxidation) may be responsible for SAs degradation by PMS alone rather than conventional radical oxidation. However, phenol, which can be efficiently degraded by O-1(2), only showed 6.2% removal rate by PMS alone, suggesting the limited contribution of O-1(2). Thus PMS direct oxidation would be the dominant nonradical oxidation process of PMS alone for efficient SAs degradation. Then electron paramagnetic resonance (EPR) experiments also verified the high SAs degradation efficiency was attributed to PMS direct oxidation. Furthermore, density functional theory (DFT) calculation and SAs pathways also indirectly confirmed PMS nonradical oxidation, where SAs were selectively attacked at the N atom on the benzene ring to form chromogenic products and S atom of the sulfanilamide groups by PMS direct oxidation. This study gives new insight into selectivity, performances and mechanisms of PMS self-oxidation on sulfonamide antibiotics degradation.
引用
收藏
页码:2539 / 2546
页数:8
相关论文
共 44 条
[1]   Mechanism of Persulfate Activation by Phenols [J].
Ahmad, Mushtaque ;
Teel, Amy L. ;
Watts, Richard J. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (11) :5864-5871
[2]   Radical generation by the interaction of transition metals with common oxidants [J].
Anipsitakis, GP ;
Dionysiou, DD .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (13) :3705-3712
[3]   Catalytic ozonation of sulfamethazine using Ce0.1Fe0.9OOH as catalyst: Mineralization and catalytic mechanisms [J].
Bai, Zhiyong ;
Yang, Qi ;
Wang, Jianlong .
CHEMICAL ENGINEERING JOURNAL, 2016, 300 :169-176
[4]   Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine [J].
Batista, Ana Paula S. ;
Teixeira, Antonio Carlos S. C. ;
Cooper, William J. ;
Cottrell, Barbara A. .
WATER RESEARCH, 2016, 93 :20-29
[5]   Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups [J].
Boreen, AL ;
Arnold, WA ;
McNeill, K .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (14) :3933-3940
[6]   Removal of dinitrotoluenes in wastewater by sono-activated persulfate [J].
Chen, Wen-Shing ;
Su, Yi-Chang .
ULTRASONICS SONOCHEMISTRY, 2012, 19 (04) :921-927
[7]   Conjugative multi-resistant plasmids in Haihe River and their impacts on the abundance and spatial distribution of antibiotic resistance genes [J].
Dang, Bingjun ;
Mao, Daqing ;
Xu, Yan ;
Luo, Yi .
WATER RESEARCH, 2017, 111 :81-91
[8]   Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils [J].
Doretto, Keity Margareth ;
Peruchi, Livia Maniero ;
Rath, Susanne .
SCIENCE OF THE TOTAL ENVIRONMENT, 2014, 476 :406-414
[9]   Nitrogen-Doped Graphene for Generation and Evolution of Reactive Radicals by Metal-Free Catalysis [J].
Duan, Xiaoguang ;
Ao, Zhimin ;
Sun, Hongqi ;
Indrawirawan, Stacey ;
Wang, Yuxian ;
Kang, Jian ;
Liang, Fengli ;
Zhu, Z. H. ;
Wang, Shaobin .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (07) :4169-4178
[10]   Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation [J].
Feng, Yong ;
Liu, Jinhua ;
Wu, Deli ;
Zhou, Zhengyuan ;
Deng, Yu ;
Zhang, Tong ;
Shih, Kaimin .
CHEMICAL ENGINEERING JOURNAL, 2015, 280 :514-524