On large-scale diagonalization techniques for the Anderson model of localization

被引:105
作者
Schenk, Olaf [1 ]
Bollhoefer, Matthias [2 ]
Roemer, Rudolf A. [3 ,4 ]
机构
[1] Univ Basel, Dept Comp Sci, CH-4056 Basel, Switzerland
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Computat Math, D-38106 Braunschweig, Germany
[3] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[4] Univ Warwick, Ctr Comp Sci, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Anderson model of localization; large-scale eigenvalue problem; Lanczos algorithm; Jacobi-Davidson algorithm; Cullum-Willoughby implementation; symmetric indefinite matrix; multilevel preconditioning; maximum weighted matching;
D O I
10.1137/070707002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose efficient preconditioning algorithms for an eigenvalue problem arising in quantum physics, namely, the computation of a few interior eigenvalues and their associated eigenvectors for large-scale sparse real and symmetric indefinite matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation by Cullum and Willoughby with the shift-and-invert techniques ill the implicitly restarted Lanczos method and in the Jacobi-Davidson method. Our preconditioning approaches for the shift-and-invert symmetric indefinite linear system are based on maximum weighted matchings and algebraic multilevel incomplete LDLT factorizations. These techniques can be seen as a complement to the alternative idea of using more complete pivoting techniques for the highly ill-conditioned symmetric indefinite Anderson matrices. We demonstrate the effectiveness and the numerical accuracy of these algorithms. Our numerical examples reveal that recent algebraic multilevel preconditioning solvers can accelerate the computation of a large-scale eigenvalue problem corresponding to the Anderson model of localization by several orders of magnitude.
引用
收藏
页码:91 / 112
页数:22
相关论文
共 70 条
[1]   An approximate minimum degree ordering algorithm [J].
Amestoy, PR ;
Davis, TA ;
Duff, IS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (04) :886-905
[2]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[3]  
[Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
[4]  
[Anonymous], 1997, ARPACK Users' Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, DOI 10.1137/1.9780898719628
[5]   FRACTAL DIMENSIONALITY OF WAVE-FUNCTIONS AT THE MOBILITY EDGE - QUANTUM FRACTAL IN THE LANDAU-LEVELS [J].
AOKI, H .
PHYSICAL REVIEW B, 1986, 33 (10) :7310-7313
[6]   Multilevel preconditioned iterative eigensolvers for Maxwell eigenvalue problems [J].
Arbenz, P ;
Geus, R .
APPLIED NUMERICAL MATHEMATICS, 2005, 54 (02) :107-121
[7]  
Benzi M, 2005, ACTA NUMER, V14, P1, DOI 10.1017/S0962492904000212
[8]   Preconditioning highly indefinite and nonsymmetric matrices [J].
Benzi, M ;
Haws, JC ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (04) :1333-1353
[10]   JADAMILU:: a software code for computing selected eigenvalues of large sparse symmetric matrices [J].
Bollhoefer, Matthias ;
Notay, Yvan .
COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (12) :951-964