Secondary organic aerosol formation from the oxidation of decamethylcyclopentasiloxane at atmospherically relevant OH concentrations

被引:15
|
作者
Charan, Sophia M. [1 ]
Huang, Yuanlong [2 ]
Buenconsejo, Reina S. [1 ]
Li, Qi [3 ]
Cocker, David R., III [3 ]
Seinfeld, John H. [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[2] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[3] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
CYCLIC VOLATILE METHYLSILOXANES; GAS-PHASE REACTIONS; RATE CONSTANTS; FLOW REACTOR; CHEMISTRY; KINETICS; TIME; PARTICLES; SILOXANES; EMISSIONS;
D O I
10.5194/acp-22-917-2022
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Decamethylcyclopentasiloxane (D5,C10H30O5Si5) is measured at parts per trillion (ppt) levels outdoors and parts per billion (ppb) levels indoors. Primarily used in personal care products, its outdoor concentration is correlated to population density. Since understanding the aerosol formation potential of volatile chemical products is critical to understanding particulate matter in urban areas, the secondary organic aerosol yield of D5 was studied under a wide range of OH concentrations and, correspondingly, OH exposures using both batch-mode chamber and continuously run flow tube experiments. These results were comprehensively analyzed and compared to two other secondary organic aerosol (SOA) yield datasets from literature. It was found that the SOA yield from the oxidation of D5 is extremely dependent on either the OH concentration or exposure. For OH concentrations of less than or similar to 10(7) molec. cm(-3) or OH exposures of less than or similar to 2 x 10(11) molec.s cm(-3), the SOA yield is largely < 5 % and usually similar to 1 %. This is significantly lower than SOA yields previously reported. Using a two-product absorptive partitioning model for the upper bound SOA yields, the stoichiometric mass fraction and absorptive partitioning coefficients are, for the first product, proportional to(1) = 0.056 and K-OM,K-1 = 0.022 m(3) mu g(-1); for the second product, they are proportional to(2) = 7.7 and K-OM,K-2 = 4.3 x 10(-5) m(3) mu g(-1). Generally, there are high SOA yields (> 90 %) at OH mixing ratios of 5 x 10(9) molec. cm(-3) or OH exposures above 10(12) molec.s cm(-3).
引用
收藏
页码:917 / 928
页数:12
相关论文
共 50 条
  • [21] Chemical evolution of secondary organic aerosol from OH-initiated heterogeneous oxidation
    George, I. J.
    Abbatt, J. P. D.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (12) : 5551 - 5563
  • [22] Secondary Organic Aerosol Formation and Chemistry from the OH-Initiated Oxidation of Monofunctional C10 Species
    Hallward-Driemeier, Andrew H.
    Hall, Jonathan R.
    Spence, Katie A.
    Telicki, Benjamin P.
    Schaeffer, Amelia F.
    Avila, Jose C.
    Albores, Isabel S.
    Carrasquillo, Anthony J.
    ACS EARTH AND SPACE CHEMISTRY, 2024, 8 (05): : 907 - 919
  • [23] Parameterising secondary organic aerosol from α-pinene using a detailed oxidation and aerosol formation model
    Ceulemans, K.
    Compernolle, S.
    Mueller, J. -F.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (12) : 5343 - 5366
  • [24] The formation of secondary organic aerosol from the isoprene plus OH reaction in the absence of NOx
    Kleindienst, T. E.
    Lewandowski, M.
    Offenberg, J. H.
    Jaoui, M.
    Edney, E. O.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (17) : 6541 - 6558
  • [25] Predicted secondary organic aerosol concentrations from the oxidation of isoprene in the Eastern United States
    Lane, Timothy E.
    Pandis, Spyros N.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (11) : 3984 - 3990
  • [26] Water diffusion in atmospherically relevant α-pinene secondary organic material
    Price, Hannah C.
    Mattsson, Johan
    Zhang, Yue
    Bertram, Allan K.
    Davies, James F.
    Grayson, James W.
    Martin, Scot T.
    O'Sullivan, Daniel
    Reid, Jonathan P.
    Rickards, Andrew M. J.
    Murray, Benjamin J.
    CHEMICAL SCIENCE, 2015, 6 (08) : 4876 - 4883
  • [27] Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions
    Lim, Christopher Y.
    Hagan, David H.
    Coggon, Matthew M.
    Koss, Abigail R.
    Sekimoto, Kanako
    de Gouw, Joost
    Warneke, Carsten
    Cappa, Christopher D.
    Kroll, Jesse H.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (19) : 12797 - 12809
  • [28] Secondary organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes
    Zhao, D. F.
    Kaminski, M.
    Schlag, P.
    Fuchs, H.
    Acir, I. -H.
    Bohn, B.
    Haeseler, R.
    Kiendler-Scharr, A.
    Rohrer, F.
    Tillmann, R.
    Wang, M. J.
    Wegener, R.
    Wildt, J.
    Wahner, A.
    Mentel, Th. F.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (02) : 991 - 1012
  • [29] High formation of secondary organic aerosol from the photo-oxidation of toluene
    Hildebrandt, L.
    Donahue, N. M.
    Pandis, S. N.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (09) : 2973 - 2986
  • [30] Formation of Secondary Organic Aerosol from the Heterogeneous Oxidation by Ozone of a Phytoplankton Culture
    Schneider, Stephanie R.
    Collins, Douglas B.
    Lim, Christopher Y.
    Zhu, Linglan
    Abbatt, Jonathan P. D.
    ACS EARTH AND SPACE CHEMISTRY, 2019, 3 (10): : 2298 - 2306