Conceptual design of a 3 MWth yttrium hydride moderated heat pipe cooled micro reactor

被引:18
作者
Alawneh, Luay M. [1 ,3 ]
Vaghetto, Rodolfo [1 ]
Hassan, Yassin [1 ]
White, Harold G Sonny [2 ]
机构
[1] Texas A&M Univ, Thermal Hydraul Res Lab, College Stn, TX 77845 USA
[2] Limitless Space Inst, 16441 Space Ctr Blvd, Houston, TX 77058 USA
[3] Thermal Hydraul Res Lab, 3380 Univ Drive East, College Stn, TX 77845 USA
关键词
Micro reactors; Heat pipes; Yttrium hydride; Space reactor;
D O I
10.1016/j.nucengdes.2022.111931
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Micro reactors are gaining substantial interest worldwide due to their capabilities to deliver power to remote and decentralized areas and their long fuel cycles, making them more attractive than other energy sources. This paper presents a conceptual design and steady-state neutronics and thermal-hydraulics analyses results for a heat pipe cooled yttrium hydride moderated micro reactor. The reactor was designed for both terrestrial and space application purposes; hence, size and weight were important. The neutronics analysis calculations were performed to evaluate key safety parameters such as control devices reactivity worth, temperature reactivity co-efficients, and power distribution of the reactor core. Burnup calculations were performed using Monte Carlo code MCNP6.2 and verified against Serpent code results. The thermal-hydraulics analyses calculations were performed to evaluate the temperature distribution in a representative unit cell in the reactor core using the STAR CCM+ multi-physics computational fluid dynamics (CFD) software by utilizing the power distribution obtained from neutronics calculations. It was demonstrated that this reactor could be operated safely for more than 11 years, generating 3 MW of thermal power.
引用
收藏
页数:14
相关论文
共 21 条
[1]  
Bess J.D., 2008, P ICAPP, V8
[2]   ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data [J].
Brown, D. A. ;
Chadwick, M. B. ;
Capote, R. ;
Kahler, A. C. ;
Trkov, A. ;
Herman, M. W. ;
Sonzogni, A. A. ;
Danon, Y. ;
Carlson, A. D. ;
Dunn, M. ;
Smith, D. L. ;
Hale, G. M. ;
Arbanas, G. ;
Arcilla, R. ;
Bates, C. R. ;
Beck, B. ;
Becker, B. ;
Brown, F. ;
Casperson, R. J. ;
Conlin, J. ;
Cullen, D. E. ;
Descalle, M. -A. ;
Firestone, R. ;
Gaines, T. ;
Guber, K. H. ;
Hawari, A. I. ;
Holmes, J. ;
Johnson, T. D. ;
Kawano, T. ;
Kiedrowski, B. C. ;
Koning, A. J. ;
Kopecky, S. ;
Leal, L. ;
Lestone, J. P. ;
Lubitz, C. ;
Marquez Damian, J. I. ;
Mattoon, C. M. ;
McCutchan, E. A. ;
Mughabghab, S. ;
Navratil, P. ;
Neudecker, D. ;
Nobre, G. P. A. ;
Noguere, G. ;
Paris, M. ;
Pigni, M. T. ;
Plompen, A. J. ;
Pritychenko, B. ;
Pronyaev, V. G. ;
Roubtsov, D. ;
Rochman, D. .
NUCLEAR DATA SHEETS, 2018, 148 :1-142
[3]  
Bushman A., 2004, MITNSATR003 CTR ADV
[4]  
Dixon B W., 2021, Idaho National Laboratory, DOI [10.2172/1811894, DOI 10.2172/1811894]
[5]   Reactor core design of UPR-s: A nuclear reactor for silence thermoelectric system NUSTER [J].
Du, Xianan ;
Tao, Yushan ;
Zheng, Youqi ;
Wang, Chenglong ;
Wang, Yongping ;
Qiu, Suizheng ;
Zhang, Bin ;
Zhai, Zi'an .
NUCLEAR ENGINEERING AND DESIGN, 2021, 383
[6]  
Durkee J.W., 2013, LAUR1200179 LANL
[7]  
Edson N., 2016, 80755REP001C DECC
[8]   Space nuclear reactor power system concepts with static and dynamic energy conversion [J].
El-Genk, Mohamed S. .
ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (03) :402-411
[9]   DESIGN GROUND TEST AND FLIGHT TEST OF SNAP 10A FIRST REACTOR IN SPACE [J].
JOHNSON, RA ;
MORGAN, WT ;
ROCKLIN, SR .
NUCLEAR ENGINEERING AND DESIGN, 1967, 5 (01) :7-&
[10]  
Koning A., 2006, 6190 NEA