Core-Shell Engineering of Pd-Ag Bimetallic Catalysts for Efficient Hydrogen Production from Formic Acid Decomposition

被引:110
作者
Choi, Bu-Seo [1 ]
Song, Jaeeun [1 ]
Song, Minjin [1 ]
Goo, Bon Seung [1 ]
Lee, Young Wook [1 ]
Kim, Yena [1 ]
Yang, Hyunwoo [1 ]
Han, Sang Woo [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & KI NanoCentury, Ctr Nanotecton, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
core-shell; Pd-Ag; bimetallic catalysts; hydrogen production; formic acid; CARBON-SUPPORTED PD; SELECTIVE DEHYDROGENATION; NANOPARTICLES; SURFACE; LIGAND; ELECTROOXIDATION; GROWTH; AU/C;
D O I
10.1021/acscatal.8b04414
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To develop high-performance bimetallic catalysts, fine control over both the ligand and strain effects of secondary elements on the catalytic function of primary elements is crucial. Here we introduce an approach to produce Pd-Ag bimetallic core-shell nanocatalysts with synergistic regulation of the ligand and strain effects of Ag. Through precise core-shell engineering, (PdAg alloy core)@(ultrathin Pd shell) nanocrystals with controlled core compositions and shell thicknesses in addition to a well-defined octahedral morphology could be realized. The prepared octahedral PdAg@Pd core-shell nanocrystals exhibited pronounced catalytic performance toward hydrogen production from formic acid decomposition. The maximum catalytic activity was achieved with PdAg@Pd nanocrystals consisting of PdAg alloy cores with an average Pd/Ag atomic ratio of 3.5:1 and 1.1 atomic layer of Pd shells, which showed a record high turnover frequency of 21 500 h(-1) at 50 degrees C. This catalytic function could be attributed to the optimized combination of the electronic promotion and lattice strain effects of Ag on Pd. We envision that the present work can provide a rational guideline for the design of improved catalysts for various important chemical and electrochemical reactions.
引用
收藏
页码:819 / 826
页数:15
相关论文
共 45 条
[1]   Size and Shape Effects of Pd@Pt Core-Shell Nanoparticles: Unique Role of Surface Contraction and Local Structural Flexibility [J].
An, Wei ;
Liu, Ping .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (31) :16144-16149
[2]   Comparative study of carbon-supported Pd and PdAg catalysts synthesised by the polyol process and reverse micelles methods [J].
Armenta-Gonzalez, A. J. ;
Carrera-Cerritos, R. ;
Guerra-Balcazar, M. ;
Arriaga, L. G. ;
Ledesma-Garcia, J. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2015, 45 (01) :33-41
[3]   Iron(II) Complexes of the Linear rac-Tetraphos-1 Ligand as Efficient Homogeneous Catalysts for Sodium Bicarbonate Hydrogenation and Formic Acid Dehydrogenation [J].
Bertini, Federica ;
Mellone, Irene ;
Ienco, Andrea ;
Peruzzini, Maurizio ;
Gonsalvi, Luca .
ACS CATALYSIS, 2015, 5 (02) :1254-1265
[4]   Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon [J].
Bi, Qing-Yuan ;
Lin, Jian-Dong ;
Liu, Yong-Mei ;
He, He-Yong ;
Huang, Fu-Qiang ;
Cao, Yong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (39) :11849-11853
[5]   Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst [J].
Boddien, Albert ;
Mellmann, Doerthe ;
Gaertner, Felix ;
Jackstell, Ralf ;
Junge, Henrik ;
Dyson, Paul J. ;
Laurenczy, Gabor ;
Ludwig, Ralf ;
Beller, Matthias .
SCIENCE, 2011, 333 (6050) :1733-1736
[6]   Single Atoms of Pt-Group Metals Stabilized by N-Doped Carbon Nanofibers for Efficient Hydrogen Production from Formic Acid [J].
Bulushev, Dmitri A. ;
Zacharska, Monika ;
Lisitsyn, Alexander S. ;
Podyacheva, Olga Yu. ;
Hage, Fredrik S. ;
Ramasse, Quentin M. ;
Bangert, Ursel ;
Bulusheva, Lyubov G. .
ACS CATALYSIS, 2016, 6 (06) :3442-3451
[7]   A prolific catalyst for dehydrogenation of neat formic acid [J].
Celaje, Jeff Joseph A. ;
Lu, Zhiyao ;
Kedzie, Elyse A. ;
Terrile, Nicholas J. ;
Lo, Jonathan N. ;
Williams, Travis J. .
NATURE COMMUNICATIONS, 2016, 7
[8]   A computational study on the decomposition of formic acid catalyzed by (H2O)x, x=0-3:: Comparison of the gas-phase and aqueous-phase results [J].
Chen, Hsin-Tsung ;
Chang, Jee-Gong ;
Chen, Hui-Lung .
JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (35) :8093-8099
[9]   Immobilizing Highly Catalytically Active Noble Metal Nanoparticles on Reduced Graphene Oxide: A Non-Noble Metal Sacrificial Approach [J].
Chen, Yao ;
Zhu, Qi-Long ;
Tsumori, Nobuko ;
Xu, Qiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (01) :106-109
[10]   Importance of Ligand Effect in Selective Hydrogen Formation via Formic Acid Decomposition on the Bimetallic Pd/Ag Catalyst from First-Principles [J].
Cho, Jinwon ;
Lee, Sangheon ;
Han, Jonghee ;
Yoon, Sung Pil ;
Nam, Suk Woo ;
Choi, Sun Hee ;
Lee, Kwan-Young ;
Ham, Hyung Chul .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (39) :22553-22560