Singular inverse square potential in coordinate space with a minimal length

被引:33
作者
Bouaziz, Djamil [1 ]
Birkandan, Tolga [2 ]
机构
[1] Univ Jijel, Dept Phys, BP 98, Ouled Aissa 18000, Jijel, Algeria
[2] Istanbul Tech Univ, Dept Phys, TR-34469 Istanbul, Turkey
关键词
Generalized uncertainty principle; Minimal length; Inverse square potential; Singular potential; UNCERTAINTY RELATION; DEFORMED SPACE; RENORMALIZATION; DISCRETENESS; EQUATION; STATES; FIELD; ATOM; GUP;
D O I
10.1016/j.aop.2017.10.004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of a particle of mass m in the field of the inverse square potential alpha/r(2) is studied in quantum mechanics with a generalized uncertainty principle, characterized by the existence of a minimal length. Using the coordinate representation, for a specific form of the generalized uncertainty relation, we solve the deformed Schrodinger equation analytically in terms of confluent Heun functions. We explicitly show the regularizing effect of the minimal length on the singularity of the potential. We discuss the problem of bound states in detail and we derive an expression for the energy spectrum in a natural way from the square integrability condition; the results are in complete agreement with the literature. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:62 / 74
页数:13
相关论文
共 68 条
[1]  
Abramowitz M., 1966, HDB MATH FUNCTIONS F, P556
[2]   Charged particle in the field of an electric quadrupole in two dimensions [J].
Alhaidari, A. D. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (49) :14843-14855
[3]   Renormalization of the Strongly Attractive Inverse Square Potential: Taming the Singularity [J].
Alhaidari, A. D. .
FOUNDATIONS OF PHYSICS, 2014, 44 (10) :1049-1058
[4]   Discreteness of space from the generalized uncertainty principle [J].
Ali, Ahmed Farag ;
Das, Saurya ;
Vagenas, Elias C. .
PHYSICS LETTERS B, 2009, 678 (05) :497-499
[5]   CAN SPACETIME BE PROBED BELOW THE STRING SIZE [J].
AMATI, D ;
CIAFALONI, M ;
VENEZIANO, G .
PHYSICS LETTERS B, 1989, 216 (1-2) :41-47
[6]  
[Anonymous], 1995, Heun's Differential Equations
[7]   Anions and anomalies [J].
Bawin, M. ;
Coon, Sidney A. ;
Holstein, Barry R. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2007, 22 (27) :4901-4910
[8]   Electron-bound states in the field of dipolar molecules [J].
Bawin, M .
PHYSICAL REVIEW A, 2004, 70 (02) :022505-1
[9]   Singular potentials and limit cycles [J].
Beane, SR ;
Bedaque, PF ;
Childress, L ;
Kryjevski, A ;
McGuire, J ;
van Kolck, U .
PHYSICAL REVIEW A, 2001, 64 (04) :421031-421038
[10]   Hydrogen-atom spectrum under a minimal-length hypothesis [J].
Benczik, S ;
Chang, LN ;
Minic, D ;
Takeuchi, T .
PHYSICAL REVIEW A, 2005, 72 (01)