Testing for bivariate stochastic dominance using inequality restrictions

被引:3
作者
Stengos, Thanasis [2 ]
Thompson, Brennan S. [1 ]
机构
[1] Ryerson Univ, Dept Econ, Toronto, ON M5B 2K3, Canada
[2] Univ Guelph, Dept Econ, Guelph, ON N1G 2W1, Canada
关键词
Stochastic dominance; Inequality restrictions; Multidimensional welfare; STATISTICAL-INFERENCE; POVERTY; DISTRIBUTIONS; WELFARE;
D O I
10.1016/j.econlet.2011.11.041
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a test of bivariate stochastic dominance within a generalized framework for testing inequality restrictions, utilizing the covariance structure of the estimates of the joint distribution functions. Monte Carlo simulations and an empirical example assess its usefulness. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:60 / 62
页数:3
相关论文
共 14 条
[1]   Nonparametric tests of stochastic dominance in income distributions [J].
Anderson, G .
ECONOMETRICA, 1996, 64 (05) :1183-1193
[2]   The empirical assessment of multidimensional welfare, inequality and poverty: Sample weighted multivariate generalizations of the Kolmogorov-Smirnov two sample tests for stochastic dominance [J].
Anderson, Gordon .
JOURNAL OF ECONOMIC INEQUALITY, 2008, 6 (01) :73-87
[3]  
[Anonymous], 1989, STUDIES EC UNCERTAIN
[4]  
[Anonymous], 1998, 9811 MCMASTER U CTR
[5]   Consistent tests for stochastic dominance [J].
Barrett, GF ;
Donald, SG .
ECONOMETRICA, 2003, 71 (01) :71-104
[6]   DISTRIBUTION-FREE STATISTICAL-INFERENCE WITH LORENZ CURVES AND INCOME SHARES [J].
BEACH, CM ;
DAVIDSON, R .
REVIEW OF ECONOMIC STUDIES, 1983, 50 (04) :723-735
[7]  
Dardanoni V., 1999, ECONOMET J, V2, P49, DOI DOI 10.1111/1368-423X.00020
[8]   Statistical inference for stochastic dominance and for the measurement of poverty and inequality [J].
Davidson, R ;
Duclos, JY .
ECONOMETRICA, 2000, 68 (06) :1435-1464
[9]   Robust multidimensional poverty comparisons [J].
Duclos, Jean-Yves ;
Sahn, David E. ;
Younger, Stephen D. .
ECONOMIC JOURNAL, 2006, 116 (514) :943-968
[10]   An empirical analysis of term premiums using significance tests for stochastic dominance [J].
Fisher, G ;
Willson, D ;
Xu, K .
ECONOMICS LETTERS, 1998, 60 (02) :195-203